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Abstract 

 Much of the rough surface scattering theory developed to date considers only the 

effects of fully coherent and fully incoherent illumination in the formation of solutions—

a problem studied in earnest since the late 1800’s.  In response, this dissertation extends 

the theory currently available in modeling rough surface scattering to include the effects 

of partially coherent illumination.  Such illumination plays a pivotal role in our 

understanding of active-illumination systems, similar to those found in directed-energy 

and remote-sensing applications, which use the light scattered from distant targets for 

tactical purposes.  Specifically, this dissertation uses the physical optics approximation 

(Kirchhoff boundary conditions) to determine a 3D vector solution for the far-field 

scattering of electromagnetic beam illumination with partial spatial coherence from 

statistically rough surfaces.  The analysis considers three different material substrates: 

dielectrics, conductors, and a perfect electrical conductor.  It also makes use of a 

Gaussian Schell-model form for the incident-field cross-spectral density matrix.  In so 

doing, this dissertation develops closed-form expressions for the scattered field cross-

spectral density matrix with two analytical forms—one applicable to smooth-to-

moderately rough surfaces and the other applicable to very rough surfaces.  The analysis 

shows that these closed-form expressions are, in general, complicated functions of both 

the source (size and coherence properties) and surface parameters (surface height 

standard deviation and correlation length).  Under appropriate conditions, the analysis 

also compares the 3D vector solution to previously validated solutions and empirical 

measurements.  The results show good agreement. 
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THE SCATTERING OF PARTIALLY COHERENT ELECTROMAGNETIC BEAM  
 

ILLUMINATION FROM STATISTICALLY ROUGH SURFACES 
 
 
 
 

1 Introduction 

 In 1960, Theodore Maiman invented the first working laser [1], which originally 

boasted only a few milliwatts of power.  Yet, by the 1970s, laser powers reached the 

megawatt level and the directed-energy (DE) research community came to life [2].  The 

technology found in DE applications is inspiring in that it presents game-changing 

capabilities by offering systems with varying lethality, speed-of-light delivery, and 

unparalleled precision [3-5].  With this in mind, the analysis presented in this dissertation 

hopes to aid the burgeoning DE research community and bring us one step closer to 

fielding an operational system [6, 7]. 

1.1 Problem statement 

 When using active-illumination systems, more often than not a highly coherent 

laser beam propagates from the source through the atmosphere resulting in partially 

coherent beam illumination on the target.  This topic plays a key role in DE and remote-

sensing applications which use the light scattered from distant targets for tactical 

purposes [8, 9].  Interestingly enough, not much literature exists pertaining to the 

scattering of partially coherent light from rough surfaces.   

 In an effort to bridge this gap, recent publications derived a 2D scalar-equivalent 

solution for the scattering of partially coherent beams from statistically rough surfaces 
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using the physical-optics (PO) approximation (Kirchhoff boundary conditions) [10, 11].  

Specifically, the analysis made use of a Gaussian Schell-model (GSM) form in creating 

the incident field cross-spectral density function (CSDF).  This allows one to vary the 

size and spatial coherence properties of the incident radiation.  In so doing, the analysis 

developed closed-form expressions for the scattered field CSDF to observe the size and 

spatial coherence properties of the scattered radiation in the far field.  The analysis also 

validated these analytical expressions through computational simulations and showed 

good agreement between the theoretical predictions and the numerical results. 

 While the 2D scalar-equivalent solution is a convenient tool for gaining insight 

into rough surface scattering, a complete understanding of the problem requires a 3D 

vector solution.  With that said, this dissertation makes use of the PO approximation to 

determine a 3D vector solution for the far-field scattering of electromagnetic beam 

illumination with partial spatial coherence from statistically rough surfaces.  By 

formulating the analysis in a manner consistent with Wolf’s unified theory of coherence 

and polarization [12, 13], all physical implications inherent in Wolf’s work apply here.   

 The 3D vector solution developed in this dissertation considers three different 

material substrates: dielectrics, conductors, and a perfect electrical conductor.  In 

addition, it uses a GSM form in creating the incident field cross-spectral density matrix 

(CSDM).  This allows for the formulation of closed-form expressions for the scattered 

field CSDM.  As such, the analysis shows that two analytical forms result for the 

scattered field CDSM—one applicable to smooth-to-moderately rough surfaces and the 

other applicable to very rough surfaces.   
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 Both analytical forms for the scattered field CSDM contain complicated functions 

of the source parameters (size and coherence properties) and the surface parameters 

(surface height standard deviation and correlation length).  In particular, the closed-form 

expression applicable to smooth-to-moderately rough surfaces is expressed as an infinite 

series.  This infinite series is slowly convergent; however, one can still gather physical 

intuition from its analytical form.  On the other hand, the closed-form expression 

applicable to very rough surfaces is incredibly physical, and under certain circumstances, 

maintains a GSM form.  Based on these circumstances, the analysis develops closed-form 

expressions for the angular spectral degree of coherence (SDoC) and spectral density 

(SD) radii.  These analytical expressions also contain complicated functions of both the 

source and the surface parameters.  The analysis demonstrates that for many scenarios of 

interest, one can approximate/simplify the SDoC radius as a function of just the source 

parameters and the SD radius as a function of just the surface parameters.   

1.2 Dissertation overview 

 Chapters 2 and 3 of this dissertation provide background information in the form 

of theory and literature reviews, respectively.  The goal here is to provide future research 

efforts with a thorough investigation of the problem at hand.  Chapter 4 provides the 

methodology used to obtain the 3D vector solution proposed above.  Here, the analysis 

states all simplifying assumptions and explains their physical implications.  Chapter 5 

provides an exploration of the 3D vector solution.  The analysis given here visually 

demonstrates aspects of the closed-form expressions and shows that the results are 

consistent with previously validated solutions and empirical measurements.  Chapter 6 

provides a conclusion for this dissertation with a roadmap for future research efforts. 
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2 Background electromagnetic and optics theory review 

 Electromagnetic theory and subsequently optics theory involves the application of 

Maxwell’s equations to the geometry of a specific problem.  As such, the solutions 

obtained from Maxwell’s equations determine the electromagnetic vector fields present 

within a region of interest.  With these vector fields, one can then calculate quantities of 

importance to their work.  The following chapter reviews the necessary electromagnetic 

and optics theory needed to undertake the problem proposed above in Chapter 1. 

2.1 Surface equivalence 

 There are many approaches to solving Maxwell’s equations for the vector fields 

present in an electromagnetic scattering problem.  One robust approach uses surface 

equivalence.  According to Balanis [14], Schelkunoff was the first to introduce surface 

equivalence in 1936 [15].  In essence, surface equivalence is a more rigorous extension of 

Huygen’s principle [16], which, according to Hecht [17], states that “Every point on a 

propagating wavefront serves as the source of spherical secondary wavelets, such that the 

wavefront at some later time is the envelope of these wavelets.”  With this in mind, 

surface equivalence effectively defines equivalent sources in the form of surface current 

densities on a scattering object.  Appropriately defined, these surface current densities, in 

addition to other sources, replicate the fields present in a region of interest.   

 To make this concept manifest, first consider the generic electromagnetic 

scattering problem depicted in Figure 1 [18].  As shown, a primary source with current 

densities, priJ  and priM , radiates incident fields, incE  and incH , which propagate in free 

space with index of refraction 0 1n =  and impedance 0 0 0η μ ε= , where 0ε  and 0μ  are 
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the free-space permittivity and permeability, respectively1.  These known incident fields 

illuminate a homogeneous, penetrable scattering object of volume V  with index of 

refraction n  and impedance η 2.  This illumination produces secondary sources in the 

form of current densities, secJ  and secM , which radiate scattered fields, sctE  and sctH .  It 

is important to note that these scattered fields are unknown.  Furthermore, a closed 

surface S  with an outward pointing unit-normal vector n̂  creates both an interior and 

exterior region of interest.  The interior region contains the fields, intE  and intH , found 

inside the closed surface S , whereas the exterior region contains the fields, extE  and  

extH , found outside the closed surface S .  These two regions of interest create an interior 

and exterior problem when using surface equivalence. 

  

                                                 
1.  The analysis presented throughout this dissertation uses the MKS system of units so 

that 12
0 8.854 10ε −= ×  (farads per meter) and 7

0 4 10μ π −= ×  (henries per meter) [14].  In 

addition, the analysis uses the engineering sign convention for the time-harmonic 

variations, i.e., ( ) ( ) ( ) ( ), , exp , e j tt j t ωω ω ω= =u r U r U r , where ( ),ωU r  is a position r  

and angular frequency ω  dependent vector field of interest within the analysis.  Note that 

sometimes the analysis omits the r  and ω  dependence in writing the vector fields.  This 

is done for brevity in the notation.  Also note that formulations which use the physics 

sign convention, i.e., ( ) ( ) ( ) ( ), , exp , e i tt i t ωω ω ω −= − =u r U r U r , relate to this work by a 

complex conjugate, where 1j i= = − .   

2.  Within a homogeneous space, the index of refraction n  and impedance η  relate to the 

permittivity ε  and permeability μ , where ( )0 0n εμ ε μ=  and η μ ε=  [14]. 
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Figure 1.  A generic electromagnetic scattering problem.  Here, a closed surface 
surrounds a scattering object creating an interior and exterior region of interest. 

2.1.1 Interior problem 

 Figure 2 describes the interior problem when using surface equivalence [18].  As 

shown, electric and magnetic surface current densities, int
SJ  and int

SM , exist just on the 

inside of the closed surface S  and satisfy the following definitions [14, 19]: 

 ˆint int
S = − ×J n H  (1) 

and ˆint int
S = ×M n E . (2) 

These equivalent sources radiate in the absence of the primary source and the exterior 

fields, i.e., 0ext ext= =E H .  Since the exterior fields equate to zero, this allows the interior 

region to extend throughout the exterior region creating an unbounded homogeneous 

space with index of refraction n  and impedance η .  In addition, the interior fields, intE  

and intH , satisfy Maxwell’s equations, such that [19] 

 ( )2 2
0

0

int int intj n k
nk

η= − × − + ⋅E F A∇ ∇∇  (3) 

,   sct sctE H

( ),n h( )0 0,n h

,inc incE H

V
,sec secJ M

,pri priJ M 0

0

ext

ext

¹

¹

E

H

0

0

int

int

¹

¹

E

H

n̂

S
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and ( )2 2
0

0

int int intj n k
nk

η= × − + ⋅H A F∇ ∇∇ , (4) 

where intA  and intF  are the interior magnetic and electric vector potentials, respectively, 

0 02k π λ=  is the free-space wavenumber, and 0λ  is the free-space wavelength3.  Since 

int
SJ  and int

SM  reside on a closed surface S , the vector potentials in Eqs. (3) and (4) 

satisfy the following convolution integrals [19]: 

 ( ) ( ) ( );int int int
SS

G ds′ ′ ′= = A A r J r r r  (5) 

and ( ) ( ) ( );int int int
SS

G ds′ ′ ′= = F F r M r r r , (6) 

where ′r  is the source vector, r  is the observation vector, and ( );G ′r r  is the unbounded 

Green’s function, such that 

 ( ) ( )0exp
;

4

jnk
G

π
′− −

′ =
′−

r r
r r

r r
. (7) 

As a result, the interior problem involves equivalent sources, int
SJ  and int

SM , which 

replicate the interior fields, intE  and intH , in an unbounded homogeneous space. 

                                                 
3.  Free-space wavelengths in the optical regime typically range from 2

0 10  μmλ −=  in the 

extreme ultraviolet to 0 300 μmλ =  in the far infrared [20]; thus, the analysis presented 

throughout this dissertation assumes that the free-space wavenumber is much, much 

greater than one, 0 02 1k π λ=  . 
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Figure 2.  The interior problem associated with using surface equivalence.  Here, the 
exterior region contains null fields; consequently, equivalent sources in the form of 
surface current densities replicate the interior fields.  These equivalent sources 
effectively radiate in an infinite homogeneous space. 

2.1.2 Exterior problem 

 Similar to the analysis presented for the interior problem, Figure 3 describes the 

exterior problem using surface equivalence [18].  Here, the electric and magnetic current 

densities, ext
SJ  and ext

SM , exist just on the outside of the closed surface and satisfy the 

following relationships [14, 19]: 

 ˆext ext
S = ×J n H  (8) 

and ˆext ext
S = − ×M n E . (9) 

These equivalent sources radiate in the presence of the primary source while the fields in 

the interior region are nulled, i.e., 0int int= =E H .  Since the interior fields equate to zero, 

this allows the exterior region to extend throughout the interior region creating an 

unbounded free space.  Moreover, the exterior fields, extE  and extH , satisfy the following 

superposition relationships:  

 ext inc sct= +E E E  (10) 

and ext inc sct= +H H H . (11) 

int
SM

( ),n h( ),n h

V

int
SJ

0

0

ext

ext

=

=

E

H

0

0

int

int

¹

¹

E

H

S

,pri priJ M

,   sct sctE H

( ),n h( )0 0,n h

,inc incE H

V
,sec secJ M

,pri priJ M 0

0

ext

ext

¹

¹

E

H

0

0

int

int

¹

¹

E

H

S

,   sct sctE H,inc incE H

n̂ n̂
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Solving Maxwell’s equations for the unknown scattered fields, sctE  and sctH , in Eqs. (10) 

and (11), provides [19] 

 ( )20
0

0

ext inc ext extj k
k

η= − × − + ⋅E E F A∇ ∇∇  (12) 

and ( )20
0

0

ext inc ext extj k
k

η= + × − + ⋅H H A F∇ ∇∇ , (13) 

where extA  and extF  are the exterior magnetic and electric vector potentials, respectively.  

Since ext
SJ  and ext

SM  reside on a closed surface S , the vector potentials in Eqs. (12) and 

(13) satisfy the following convolution integrals [19]: 

 ( ) ( ) ( )0 ;ext ext ext
SS

G ds′ ′ ′= = A A r J r r r  (14) 

and ( ) ( ) ( )0 ;ext ext ext
SS

G ds′ ′ ′= = F F r M r r r , (15) 

where here, ( )0 ;G ′r r  is the free-space Green’s function, such that 

 ( ) ( )0
0

exp
;

4

jk
G

π
′− −

′ =
′−

r r
r r

r r
. (16) 

Consequently, the exterior problem involves equivalent sources, ext
SJ  and ext

SM , which 

radiate the scattered fields, sctE  and sctH , in the presence of the known incident fields, 

incE  and incH .  Together these fields replicate the exterior fields, extE  and extH , which 

propagate throughout free space. 
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Figure 3.  The exterior problem associated with using surface equivalence.  Here, 
the interior region contains null fields; thus, equivalent sources in the form of 
surface current densities radiate the scattered fields.  These equivalent sources 
radiate in the presence of the primary source and incident fields.  Superposition of 
the incident and scattered fields replicate the exterior fields which propagate 
throughout free space. 

2.1.3 Specialization to a perfect electrical conductor 

 Figure 4 describes the use of surface equivalence with a perfect electrical 

conductor (PEC) [18].  Within a perfectly conducting material the interior fields vanish, 

0int int= =E H , so that only an exterior problem exists [19].  In general, a PEC has 

infinite conductivity, σ = ∞ , and the tangential electric field goes to zero all along its 

surface, i.e., ˆ 0ext× =n E  [14].  Based on this knowledge, the relationships given in Eqs. 

(8) and (9) simplify to the following expressions for a PEC: 

 ˆext ext
S = ×J n H  (17) 

and 0ext
S =M . (18) 

Furthermore, Eqs. (12) and (13) simplify, such that 

 ( )20
0

0

ext inc extj k
k

η= − + ⋅E E A∇∇  (19) 

and ext inc ext= + ×H H A∇ . (20) 

,   sct sctE H

( ),n h( )0 0,n h

,inc incE H

V

,pri priJ M

S

( )0 0,n h( )0 0,n h

V

,pri priJ M

S

ext
SJext

SM

0

0 

ext

ext

¹

¹

E

H

0

0

int

int

=

=

E

H

,sec secJ M

0

0

ext

ext

¹

¹

E

H

0

0

int

int

¹

¹

E

H

,   sct sctE H,inc incE H

n̂ n̂
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Provided Eqs. (17)-(20), only an equivalent source ext
SJ  is needed to radiate the scattered 

fields, sctE  and sctH .  Superposition with the known incident fields, incE  and incH ,   

replicates the exterior fields, extE  and extH , which propagate throughout free space. 

 
Figure 4.  The interior region within a perfect electrical conductor contains null 
fields.  As such, only an exterior problem exists when using surface equivalence.  
The resulting electric current density radiates the scattered fields and superposition 
with the known incident fields replicates the exterior fields which propagate 
throughout free space. 

2.2 Integral equations 

 The continuity of the tangential fields at the interface between the exterior and 

interior regions dictates that [19] 

 ( )ˆ ˆ ˆ0ext int ext int ext int eq
S S S× − =  × = ×  = − =n E E n E n E J J J  (21) 

and ( )ˆ ˆ ˆ0ext int ext int ext int eq
S S S× − =  × = ×  = − =n H H n H n H M M M . (22) 

As such, in an electromagnetic scattering problem using surface equivalence, eq
SJ  and 

eq
SM  readily become the primary unknowns and integral equations result.  Numerical 

techniques help in solving these integral equations for the unknown equivalent surface 

current densities, eq
SJ  and eq

SM .  

,   sct sctE H

( )s=¥( )0 0,n h

,inc incE H

V

,pri priJ M

S

,   sct sctE H

( )0 0,n h( )0 0,n h

,inc incE H

V

,pri priJ M

0

0

int

int

=

=

E

H

S

ˆ 0ext´ =n E

0

0 

ext

ext

¹

¹

E

H

0

0

ext

ext

¹

¹

E

H

0

0

int

int

=

=

E

H

ext
SJ

n̂ n̂
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2.2.1 Electric-field integral equations 

 Provided the continuity relationship found in Eq. (21), the tangential components 

of Eqs. (3) and (12) simplify, such that 

 ( )20
0

0

ˆ ˆeq ext ext inc
S j k

k

η 
− − × × − + ⋅ = × 

 
M n F A n E−∇ ∇∇  (23) 

and ( )2 2
0

0

ˆ 0eq int int
S j n k

nk

η 
− × × − + ⋅ = 

 
M n F A−∇ ∇∇ . (24) 

These coupled integro-differential equations serve as the electric-field integral equations 

(EFIEs) for the unknown equivalent surface current densities, eq
SJ  and eq

SM .  Together, 

Eqs. (23) and (24) represent a linear system of equations with two equations and two 

unknowns.  It is important to note that for a PEC, the tangential electric field goes to zero 

all along its surface, i.e., ˆ 0ext× =n E ; thus, the following EFIE results from Eq. (19): 

 ( )20
0

0

ˆ ˆinc extj k
k

η 
× = − × − + ⋅ 

 
n E n A∇∇ . (25) 

This EFIE is an integro-differential equation for the unknown equivalent surface current 

density eq
SJ . 

2.2.2 Magnetic-field integral equations 

 Magnetic-field integral equations (MFIEs) result from the continuity relationship 

given in Eq. (22).  Specifically, the tangential components of Eqs. (4) and (13) simplify, 

so that  

 ( )20
0

0

ˆ ˆeq ext ext inc
S j k

k

η 
− × × − + ⋅ = × 

 
J n A F n H∇ ∇∇  (26) 
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and ( )2 2
0

0

ˆ 0eq int int
S j n k

nk

η 
− − × × − + ⋅ = 

 
J n A F∇ ∇∇ . (27) 

These coupled integro-differential equations are the MFIEs for the unknown equivalent 

surface current densities, eq
SJ  and eq

SM .  One should note that Eqs. (26) and (27) represent 

a system of linear equations with two equations and two unknowns.  Moreover, the 

tangential components of Eq. (20) create the following MFIE for a PEC: 

 ˆ ˆeq ext inc
S − × × = ×J n A n H∇ . (28) 

This MFIE is an integro-differential equation for the unknown equivalent surface current 

density eq
SJ . 

2.2.3 Method of moments 

 The method of moments (MoM) is a robust numerical approach that solves EFIEs 

or MFIEs for the unknown equivalent surface current densities, eq
SJ  and eq

SM  [14, 19, 21].  

In using the MoM, a series of finite terms or basis functions with unknown amplitude 

coefficients effectively replace eq
SJ  and eq

SM .  This creates a number of algebraic 

expressions which matrix algebra techniques readily solve.  As a result, the MoM has the 

potential to formulate high-fidelity numerical solutions for the unknown equivalent 

surface current densities, eq
SJ  and eq

SM .   

2.3 Physical optics approximation 

 It is important to remember that when using surface equivalence in an 

electromagnetic scattering problem, the equivalent surface current densities, eq
SJ  and  

eq
SM , radiate the unknown scattered fields, sctE  and sctH , which propagate in free space 
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with index of refraction 0n  and impedance 0η .  This facilitates the use of a free-space 

Green’s function ( )0 ;G ′r r  [cf. Eq. (16)]; however, it is still difficult to formulate 

analytical solutions for eq
SJ  and eq

SM  since they are, by definition, dependent on sctE  and 

sctH , which are unknown.  The physical-optics (PO) approximation helps to alleviate 

these constraints [14, 22].  In essence, the PO approximation makes use of the 

geometrical-optics (GO) approximation to formulate the current densities involved in an 

electromagnetic scattering problem.  Figure 5 helps to further explain this point [18].  As 

shown, the current densities formulated with the PO approximation equate to zero in the 

shadow regions of a scattering object—an assumption which is analogous to using 

Kirchhoff boundary conditions in physical or wave optics [23, 24].   

 When using the PO approximation with surface equivalence, one replaces the 

unknown scattered fields with reflected fields.  Specifically, sct ref≈E E  and sct ref≈H H , 

so that the equivalent surface current densities, eq
SJ  and eq

SM , become 

 ( ) ( )ˆ ˆ ˆeq ext inc sct inc ref
S = × = × + ≈ × +J n H n H H n H H  (29) 

and ( ) ( )ˆ ˆ ˆeq ext inc sct inc ref
S = − × = − × + ≈ − × +M n E n E E n E E . (30) 

These approximations assume that the scattering object and its associated curvature are 

large compared to the wavelength of the incident fields, incE  and incH 4.  Such 

approximations are exact if the scattering object is homogeneous, infinite, and planar [14, 

22].  With that said, the incident illumination follows the law of reflection—a direct 

                                                 
4.  This is consistent with geometrical or ray optics, which emerges as the limit of 

physical or wave optics when the wavelength approaches zero, 0 0λ →  [20, 22].   
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result from the GO approximation [22]—so that the tangential reflected fields, ˆ ref×n E  

and ˆ ref×n H , relate to the tangential incident fields, ˆ inc×n E  and ˆ inc×n H , in unique ways 

for different material substrates, i.e., dielectrics, conductors, and a PEC.  Appendix A 

explores these relationships in more detail. 

 
Figure 5.  A macro-scale description of the physical optics (PO) approximation.  
Here, a point source illuminates a scattering object so that no current densities exist 
in the shadow region predicted by the geometrical optics approximation. 

2.3.1 General problem for dielectrics 

 As shown in Appendix A, the following relationships hold true for dielectrics 

according to the GO approximation [18]: 

 ˆ ˆref inc
Sr× = ×n E n E  (31) 

and ˆ ˆref inc
Sr× = − ×n H n H , (32) 

where Sr  is the known Fresnel reflection coefficient at the closed surface S of a scattering 

object.  Accordingly, the equivalent surface current densities, eq
SJ  and eq

SM , as given in 

Eqs. (29) and (30), simplify so that 

 ( ) ˆ1eq inc
S Sr≈ − ×J n H  (33) 

Point

Source
0

0

PO

PO

¹

¹

J

M

0

0

PO

PO

=

=

J

M

Shadow

Region
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and ( ) ˆ1eq inc
S Sr≈ − + ×M n E . (34) 

This dictates that when using the PO approximation for a dielectric material, the known 

tangential incident fields, ˆ inc×n E  and ˆ inc×n H , in addition to the known Fresnel 

reflection coefficient, sr , are all that is needed in determining the analytical forms of eq
SJ  

and eq
SM . 

2.3.2 Specialization to conductors 

 For very good conductors, the conductivity approaches infinity, σ →∞  [14].  As 

such, the tangential incident electric field approximates to zero all along the surface of a 

conducting material, i.e., ˆ 0inc× ≈n E , and Eqs. (33) and (34) simplify to the following 

relationships: 

 ( ) ˆ1eq inc
S Sr≈ − ×J n H  (35) 

and 0eq
S ≈M . (36) 

Thus, the analysis simplifies from that of dielectrics.  Only the electric equivalent surface 

current density eq
SJ  radiates when using the PO approximation for a conducting material. 

2.3.3 Specialization to a perfect electrical conductor 

 As shown in Appendix A, the following relationships hold true for a PEC 

according to the GO approximation [18]:  

 ˆ ˆref inc× = − ×n E n E  (37) 

and ˆ ˆref inc× = ×n H n H . (38) 

Consequently, the equivalent surface current densities, eq
SJ  and eq

SM , as given in Eqs. 

(29) and (30), simply so that 
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 ˆ2eq inc
S ≈ ×J n H  (39) 

and 0eq
S =M . (40) 

This dictates that when using the PO approximation for a perfectly conducting material, 

the known tangential incident magnetic field ˆ inc×n H  is all that is needed in determining 

the analytical form of eq
SJ . 

2.4 Mathematical techniques  

 Mathematical techniques exist which further simplify the analysis beyond the PO 

approximation.  To help make these mathematical techniques unambiguous, first consider 

the 3D electromagnetic scattering setup described in Figure 6.  The analysis also refers to 

this setup as the macro-scale scattering geometry.  Here, the vector, ˆ ˆx u+x uρ = , points 

from the source plane origin to a transverse location in the source s , since 0v =  in the 

source plane; the vector, ˆ ˆ ˆ0 y z= − +r x y z   , points from the source plane origin to the 

surface plane origin; the vector, ˆ ˆ ˆx y z′ ′ ′ ′= + +r x y z , points from the surface plane origin 

to a point on the closed surface S ; and the vector, ˆ ˆ ˆx y z= + +r x y z , points from the 

surface plane origin to an observation point.  This setup plays a pivotal role in employing 

the far-field approximation, plane-wave spectrum representation, and method of 

stationary phase, all of which are mathematical techniques which greatly simplify the 

analysis when used under the right assumptions.  
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Figure 6.  A generic setup for 3D electromagnetic scattering problems.  Here, the x 
axes align in both the source plane and the surface plane.  This assumes isotropy in 
the material substrate. 

2.4.1 Far-field approximation 

 In the far field, ′−r r  is approximately parallel to r , as shown in Figure 7 [18].  

Additionally, 0 1k ′−r r  , and the following approximations result [14]: 

 2 2
ˆ for phase variations

2
for amplitude variations

r
r r

r

′− ⋅′ ′ ′− = + − ⋅ ≈ 


r r
r r r r , (41) 

where r = r , r′ ′= r , and 

 ( ) ( ) ( ) ( ) ( )ˆ sin cos sin sin cosx y zθ φ θ φ θ′ ′ ′ ′⋅ = + +r r . (42) 

Provided Eqs. (41) and (42), the free-space Green’s function ( )0 ;G ′r r , as given in Eq. 

(16), simplifies so that 

 ( ) ( ) ( ) ( )0 0
0 0

exp exp
ˆ; exp

4 4

jk jk r
G jk

rπ π
′− − −

′ ′= ≈ ⋅
′−

r r
r r r r

r r
. (43) 

( )0 0,n h

x

y

z

x
u v

r

r

¢r

¢-r r

S

·

·

·

( ), ,x y z( )0, ,y z- 

( ), ,x y z¢ ¢ ¢

r
s
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From Eq. (43), the unknown scattered fields, sctE  and sctH , as formulated above in Eqs. 

(12) and (13), satisfy the following approximations [14]: 

 ( )20
0

0

sct ext ext sct sct
N Lj k

k

η= − × − + ⋅ ≈ +E F A E E∇ ∇∇  (44) 

and ( )20
0

0

sct ext ext sct sct
N Lj k

k

η= × − + ⋅ ≈ +H A F H H∇ ∇∇ , (45) 

where 
( ) ( )0

0 0

exp ˆ ˆ ˆ ˆ
4

sct ext
N

jk r
jk

r
η

π
−

= − + ⋅E Nθθ φφ , (46) 

 
0

1
ˆsct sct

N Nη
= ×H r E , (47) 

 
( ) ( )00

0

exp ˆ ˆ ˆ ˆ
4

sct ext
L

jk rk
j

rη π
−

= − + ⋅H Lθθ φφ , (48) 

and 0
ˆsct sct

L Lη= − ×E r H . (49) 

These expressions depend on the far-field-exterior magnetic and electric vector 

potentials, extN  and extL , such that 

 ( ) ( ) ( )0 ˆexpext ext eq
SS

jk ds′ ′ ′= = ⋅N N r J r r r  (50) 

and ( ) ( ) ( )0 ˆexpext ext eq
SS

jk ds′ ′ ′= = ⋅L L r M r r r . (51) 

It is important to remember that the PO approximation simplifies the analysis so that the 

known incident fields, incE  and incH , help in determining the analytical form of the 

equivalent surface current densities, eq
SJ  and eq

SM , in Eqs. (50) and (51).  Moving 

forward, one can use the plane-wave spectrum representation to account for incE  and 

incH .  
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Figure 7.  The micro-scale geometry describing far-field electromagnetic scattering.  
Here, the observation point extends well past what is depicted and only a small 
portion of the closed surface is displayed.  This corresponds to a zoomed-in 
description of Figure 6. 

2.4.2 Plane-wave spectrum representation 

 In order to determine the analytical form of the equivalent surface current 

densities, eq
SJ  and eq

SM , the analysis must first account for the known incident fields, incE  

and incH , which propagate from the source s  and illuminate the closed surface S  [cf. 

Figure 6].  With this in mind, one can write the incident electric field incE  in terms of its 

spectrum inc
eT  using the plane wave spectrum representation [25].  The following 

expressions result using the macro-scale scattering geometry described in Figure 6: 

 ( )
( )

( ) ( )2

1
, exp , 0

2
inc inc inc inc inc inc inc inc

e x u x uk k j dk dk v
π

∞ ∞

−∞ −∞

 = = − ⋅ + ≥  E E r T k r r  (52) 

and ( ) ( ) ( ), exp , 0inc inc inc inc inc inc inc
e e x u x uk k j k x k u dxdu v

∞ ∞

−∞ −∞

 = = + ≥  T T E ρ . (53) 

x

y

z

r

¢-r r

¢r

f ¢

f

S

q¢

q

ˆ ¢⋅r r

2p f- 

q
r
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Here, ˆ ˆ ˆinc inc inc inc
x u vk k k= + +k x u v  is the incident propagation vector and 0v ≥  is the source-

free half space with index of refraction 0 1n =  and impedance 0 0 0η μ ε= .  Since the 

divergence of the incident electric field equals zero in a source-free half space, i.e., 

0inc⋅ =E∇ , it follows that in the spatial-frequency domain, 

 0inc inc inc inc inc inc inc inc
e x ex u eu v evk T k T k T⋅ = + + =k T . (54) 

This physically states that the spectrum of the incident electric field inc
eT  is perpendicular 

to the incident propagation vector inck .  Thus, for 0inc
vk ≠ ,  

 
inc inc

inc inc incx u
ev ex euinc inc

v v

k k
T T T

k k
= − − , (55) 

so that the x and u components of inc
eT  uniquely provide the v component.   

 In a similar fashion, the following relationships provide the plane-wave spectrum 

representation for the incident magnetic field incH  and its spectrum inc
hT  [25]: 

 ( )
( )

( ) ( )2

1
, exp , 0

2
inc inc inc inc inc inc inc inc

h x u x uk k j dk dk v
π

∞ ∞

−∞ −∞

 = = − ⋅ + ≥  H H r T k r r  (56) 

and ( ) ( ) ( ), exp , 0inc inc inc inc inc inc inc
h h x u x uk k j k x k u dxdu v

∞ ∞

−∞ −∞

 = = + ≥  T T H ρ . (57) 

From Maxwell’s equations, 0 0
inc incjω μ× = −E H∇ , so that in the spatial-frequency 

domain, 

 0 0
inc inc inc

e hω μ× =k T T . (58) 

Here, 0 02ω πν=  is the free-space angular frequency and 0ν  is the free-space frequency.  

In an equivalent form, 0 0 0 0
ˆ ˆinc inc inck ω μ ε= =k k k , where ˆ inck  is the incident unit-



22 

propagation vector.  Consequently, the spectrum of the incident magnetic field inc
hT  

relates to the spectrum of the incident electric field inc
eT  in the following ways: 

 0

0 0 0 0

1 1ˆ ˆinc inc inc inc inc inc inc
h e e e

ε
ω μ μ η

= × = × = ×T k T k T k T . (59) 

It follows that hT  is also perpendicular to the incident propagation vector inck ; namely, 

 0inc inc inc inc inc inc inc inc
h x hx u hu v hvk T k T k T⋅ = + + =k T , (60) 

so that for 0inc
vk ≠ , 

 
inc inc

inc inc incx u
hv hx huinc inc

v v

k k
T T T

k k
= − − . (61) 

This says that both the x and u components of inc
hT  uniquely provide the v component. 

 Before moving on in the analysis, it is important to note that the expressions given 

in Eqs. (53) and (57) for the incident spectrums, inc
eT  and inc

hT , are mathematically 

equivalent to taking the two-dimensional Fourier transform of the incident fields in the 

source plane, i.e., ( )incE ρ  and ( )incH ρ , and going to the spatial-frequency domain.  

With that said, the expressions given in Eqs. (52) and (57) allow one to then determine 

incident fields at any observation point, i.e., ( )incE r  and ( )incH r .  Physically, this is 

analogous to summing up the contributions of a bunch of forward propagating plane 

waves which originate from the source plane [20].  It is also important to note that the 

plane-wave spectrum representation often results in rather complex integral expressions.  

In practice, one must employ additional mathematical techniques, such as the method of 

stationary phase, to solve these complex integral expressions. 
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2.4.3 Method of stationary phase 

 In using the plane-wave spectrum representation (along with the far-field and PO 

approximations), integrals of the following form often result [18]: 

 ( ) ( ) ( )exp , as 
b

a

F k f x jkg x dx k= →∞   . (62) 

Here, ( )f x  is slowly varying in the interval [ ],a b  and ( )kg x  is rapidly oscillating 

except near special points where the rate of change of ( )g x  is stationary within the 

interval, i.e., where  

 ( ) ( ) 0
d

g x g x
dx

′= = . (63) 

These special points are called critical points of the first kind [26].  Away from these 

points, ( )kg x  is rapidly oscillating and the positive and negative contributions of the 

integrand effectively cancel out.  In this case, an asymptotic mathematical technique 

known as the method of stationary phase helps in solving the integral formulated in Eq. 

(62).   

 The initial analysis assumes that there is only one critical point of the first kind; 

namely, at 0x x=  and that ( )f x  and ( )g x  are both continuous and well behaved in the 

interval [ ],a b .  Subsequently, the following conditions must hold true: ( )0 0g x ≠ , 

( )0 0g x′ = , and ( )0 0g x′′ ≠ , so that upon expanding in a Taylor series, 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2 2

0 0
0 0 0 0 0 02 2

x x x x
g x g x g x x x g x g x g x

− −
′ ′′ ′′= + − + + ≈ +  (64) 
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and ( ) ( ) ( )( ) ( ) ( ) ( )
2

0
0 0 0 0 02

x x
f x f x f x x x f x f x

−
′ ′′= + − + + ≈ , (65) 

since ( )f x  is slowly varying.  Substituting Eqs. (64) and (65) into Eq. (62), the method 

of stationary phase dictates that [26] 

 ( ) ( ) ( ) ( ) ( )1 2 , as F k F k F k k≈ + →∞ . (66) 

Here, ( ) ( ) ( ) ( ) ( ) ( )
2

1 0
0 0 0exp exp

2

x x
F k f x jkg x jk g x dx

∞

−∞

 −
′′=     

  
  (67) 

is the contribution from the critical point of the first kind at 0x x= , and ( ) ( )2F k  is the 

contribution from the end points.  These end points are called critical points of the second 

kind [26]; however, the present analysis neglects to formulate their contributions5.  With 

some mathematical prowess, Eq. (66) evaluates to the following expression [26]: 

 ( ) ( ) ( ) ( )
( )

( ) ( )1 0
0 01 2

0

2
exp exp sgn

4

f x
F k F k jkg x j g x

k g x

π π ′′≈ =         ′′
, (68) 

where ( ) ( )
( )

0
0

0

1 if 0
sgn

1 if 0

g x
g x

g x

′′ >′′ =    ′′− <
. (69) 

In general, if there are multiple critical points of the first kind present in the analysis, then 

their individual contributions sum together.   

 The analysis leading up to Eqs. (68) and (69) assumed one-dimensional 

integration; however, the method of stationary phase extends to n-dimensional integration 

                                                 
5.  Critical points of the second kind do not come into play because of the nature of the 

fields assumed in this research effort. 
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[27, 28].  As such, the contribution ( ) ( )1F k  from the critical point of the first kind at 

( )0 10 20 0, , , nx x x= =x x   becomes 

 ( ) ( ) ( )
( ){ }

( ) ( ){ }
2

1 0 2
0 01 2

2
0

2
exp exp sgn

4Det

n

x

x

f
F k jkg j g

k g

π π   = ∂        ∂

x
x x

x
, (70) 

where ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
0

2 2 2

2
1 1 2 1

2 2 2

2 2
0 2 1 2 2

2 2 2

2
1 2

n

x n

n n n

g g g

x x x x x

g g g

g x x x x x

g g g

x x x x x
=

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂
 

∂ = ∂ ∂ ∂ ∂ ∂ 
 
 
 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂   x x

x x x

x x x

x

x x x





   



, (71) 

{ }Det   denotes the determinant operation, and { } { } { }sgn A A Aλ λ+ −= −  denotes the 

signature of a real symmetric non-degenerate matrix A .  Here, { }Aλ±  are the number of 

positive and negative eigenvalues of A .   

2.5 Coherence 

 The fields of interest in electromagnetic scattering problems are often random in 

nature.  Goodman refers to such fields as optical disturbances [29].  Of primary concern 

in the statistical analysis of optical disturbances is coherence.  In essence, coherence 

describes the degree to which one point in a given optical disturbance relates to any other 

point within the optical disturbance in time or space.  An optical disturbance is coherent 

when there is a fixed relation between one point and all other points within the optical 

disturbance.  On the other hand, an optical disturbance is then incoherent when there is 

no fixed relation between one point and any other point.  Statistical properties that fall 
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somewhere between the preceding descriptions provide for a partially coherent optical 

disturbance.  Mathematically, one realizes coherence through correlation functions 

( )1 2 1 2, ; ,t tΓ r r .  These correlation functions are, in general, dependent on two points in 

space, 1r  and 2r , or two instances of time, 1t  and 2t .  

2.5.1 Self-coherence function 

 When analyzing temporal coherence, an individual uses what Goodman refers to 

as the self-coherence function ( ),τΓ r  [29].  Specifically, 

 ( ) ( ) ( ) ( ) ( )
2

* *

2

1
, lim , , , ,

T

T
T

u t u t dt u t u t
T

τ τ τ
→∞

−

Γ = + = +r r r r r , (72) 

which is simply the time autocorrelation of an analytic function ( ),u tr  at a single point 

in space r .  Throughout the analysis, ( ),u tr  represents the optical disturbance of interest 

and ( )* ,u tr  represents the complex conjugate of that optical disturbance6.  Note that in 

writing Eq. (72), one assumes that the optical disturbance is emanating from a point 

source, so that only temporal coherence effects plays a role.  As such, the temporal 

quantity, 2 1t tτ = − , is the time interval of interest in quantifying temporal coherence.  Put 

simply, the self-coherence function ( ),τΓ r  gives a distinct gauge for temporal coherence 

provided 2cτ τ π ω≈ Δ , where cτ  is the coherence time and ωΔ  is the finite angular 

bandwidth of the optical disturbance [29].  The process used to measure temporal 

coherence helps in explaining this point further. 

                                                 
6.  Note that the scalar field analysis presented here holds for vector fields, i.e., each 

component of the vector field. 
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 In practice, coherence measurements require the interference of light using optical 

devices called interferometers.  The type of interferometer used depends highly on the 

type of coherence to be measured for a given optical source.  For example, when 

temporal coherence is of concern, light from a point source is interfered with a delayed 

version of itself.  This type of interference requires amplitude splitting of the light.  A 

Michelson interferometer achieves this type of interference and is readily described 

throughout the optics literature—Goodman’s treatment is particularly insightful [29].  In 

the detection plane of a Michelson interferometer, the irradiance ( )I τ  scales with the 

self-coherence function ( ),τΓ r .  This says that one can measure temporal coherence 

through the interference of light. 

2.5.2 Mutual-coherence function 

When analyzing spatial coherence, an individual uses what Wolf, Goodman, and 

many others refer to as the mutual coherence function (MCF) ( )1 2, ,τΓ r r  [13, 29].  In 

particular, 

 ( ) ( ) ( )*
1 2 1 2, , , ,u t u tτ τΓ = +r r r r , (73) 

which is a time cross correlation of an analytic function ( ),u tr  at two points in space, 1r  

and 2r .  When dealing with a single point in space r , Eq. (73) reduces to a self-

coherence function ( ),τΓ r , as given in Eq. (72), so that in general, the MCF ( )1 2, ,τΓ r r  

is more robust in quantifying coherence.  In writing Eq. (73) and similarly Eq. (72), one 

assumes that the optical disturbance is statistically stationary, at least in the wide sense.  

This means that the average optical disturbance has no explicit time dependence; instead, 
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the MCF ( )1 2, ,τΓ r r  depends only on time difference, 2 1t tτ = − , not the actual values of 

1t  and 2t .  Physically, this is analogous to steady-state/continuous-wave operation of the 

optical source [13]. 

In writing Eq. (73), one also assumes that the optical disturbance is emanating 

from an extended source, so that both temporal and spatial coherence effects play a role.  

Temporal coherence effects play a role in the definition of the MCF ( )1 2, ,τΓ r r  because 

there is the potential for optical path-length differences between the extended source and 

the two points in space, 1r  and 2r .  These optical path-length differences are negligible 

when there is symmetry between the extended source and the two points, 1r  and 2r , and 

when the light is quasimonochromatic or narrowband, such that ω ωΔ  , where ω  is the 

mean angular frequency of the optical disturbance [13, 29].  When these conditions are 

met, the analysis treats the temporal properties within the MCF ( )1 2, ,τΓ r r  separately, 

viz., 

 ( ) ( ) ( )1 2 1 2, , , expJ jτ ωτΓ ≈r r r r  (74) 

and ( ) ( ) ( ) ( )*
1 2 1 2 1 2, , , 0 , ,J u t u tτ= Γ = =r r r r r r . (75) 

As such, the mutual intensity ( )1 2,J r r  gives a distinct gauge for spatial coherence 

provided the two points in space, 1r  and 2r , situate themselves within the spatial 

coherence area, ( )2c sA λ≈ Ω , where λ  is the mean wavelength of the optical 

disturbance and sΩ  is the solid angle subtended from the extended source to the two 
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points [13, 29].  The process used to measure spatial coherence helps in explaining this 

point further.  

 When spatial coherence is of concern, one would want to interfere the light from 

an extended source with a spatially shifted, but not delayed version of itself [29].  This 

type of interference requires wavefront splitting at two separate points.  The Young’s 

double slit experiment achieves this type of interference and is readily described 

throughout the optics literature—the treatments of Goodman and Wolf are particularly 

insightful [13, 29].  In the detection plane of Young’s double slit experiment, the 

irradiance ( ),I τr  scales with the MCF ( )1 2, ,τΓ r r , and if the setup allows for it, the 

irradiance ( )I r  scales with the mutual intensity ( )1 2,J r r .  This says that an individual 

can measure spatial coherence through the interference of light. 

2.5.3 Complex degree of coherence 

Normalizing the MCF ( )1 2, ,τΓ r r , as given in Eq. (73), an individual obtains a 

quantity referred to as the complex degree of coherence (CDoC) ( )1 2, ,γ τr r , where 

 ( ) ( )
( ) ( )

1 2
1 2

1 1 2 2

, ,
, ,

, , 0 , , 0

τ
γ τ

τ τ
Γ

=
Γ = Γ =

r r
r r

r r r r
. (76) 

Note that the complex degree of (self) coherence ( ),γ τr  follows from Eq. (72) when 

dealing with a single point in space r  [29], and similarly, the (equal-time) complex 

degree of coherence ( )1 2,j r r  follows from Eq. (75) when dealing with symmetry in the 

optical setup and narrowband light [13].  Furthermore, one can relate the visibility 
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( ),V τr  of the irradiance ( ),I τr , detected in their respective interferometer, to the CDoC 

( )1 2, ,γ τr r  using the following relationship [13, 29]: 

 ( ) ( ) ( )
( ) ( ) ( )1 2

max , min ,
, , ,

max , min ,

I I
V

I I

τ τ
τ γ τ

τ τ
−      = =
+      

r r
r r r

r r
. (77) 

Together, Eqs. (76) and (77) say that the magnitude of the CDoC ( )1 2, ,γ τr r  provides a 

normalized unit of measure for the amount of coherence (temporal or spatial) in an 

optical disturbance at two points in space, 1r  and 2r , and some time difference 2 1t tτ = − .  

For example, if ( )1 2, , 1γ τ =r r , two different points in space are correlated and the 

optical disturbance is fully coherent; however, if ( )1 2, , 0γ τ =r r , two different points in 

space are uncorrelated and the optical disturbance is incoherent.  A partially coherent 

optical disturbance then satisfies ( )1 20 , , 1γ τ< <r r . 

2.5.4 Cross-spectral density 

 The cross-spectral density (CSD) ( )1 2, ,W ωr r  is an alternative way of analyzing 

spatial coherence [13].  Explicitly,  

 ( ) ( ) ( )1 2 1 2

0

1
, , , , exp

2
W j dτ ω ωτ τ

π

∞

Γ = r r r r  (78) 

and ( ) ( ) ( )1 2 1 2, , , , expW j dω τ ωτ τ
∞

−∞

= Γ −r r r r , (79) 

such that the MCF ( )1 2, ,τΓ r r  and the CSD ( )1 2, ,W ωr r  form a Fourier transform pair.  

This says that the CSD ( )1 2, ,W ωr r  is a way to analyze spatial coherence in the space-
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frequency domain as opposed to the space-time domain with the MCF ( )1 2, ,τΓ r r .  

Moreover, Wolf derives the following result [13]: 

 ( ) ( ) ( )*
1 2 1 2, , , ,W U Uω ω ω=r r r r , (80) 

which says that the CSD ( )1 2, ,W ωr r  is the cross correlation function of an ensemble 

( ){ },U ωr  of sample functions ( ),U ωr .  These sample functions are the space- and 

angular-frequency-dependent part of a monochromatic optical disturbance, i.e., 

( ) ( ) ( ), , expu t U j tω ω=r r .  

 It is import to remember that, in general, the Fourier transform of an optical 

disturbance does not exist because it is not absolutely integrable.  However, the Wiener-

Khintchine theorem states that for a random process that is zero mean and at least wide-

sense stationary, the autocorrelation and the spectral density form a Fourier transform 

pair [13, 29].  This is an important point in the analysis because when dealing with a 

single point in space r , Eq. (80) reduces to an expression for the spectral density  

( ),S ωr , where 

 ( ) ( ) ( ) ( )*, , , , ,S W U Uω ω ω ω= =r r r r r . (81) 

Thus, the spectral density ( ),S ωr  is a way to analyze self coherence in the space-

frequency domain as opposed to the space-time domain with the self-coherence function 

( ),τΓ r .  The process used to measure spatial coherence in the space-frequency domain 

helps in explaining this point further. 

 When measuring spatial coherence in the space-frequency domain, one again uses 

Young’s double slit experiment.  Narrow-band filters placed behind the slits ensure that 
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the optical disturbances emanating are space- and angular-frequency-dependent 

ensembles, ( ){ }1,U ωr  and ( ){ }2 ,U ωr .  This allows an individual to consider the 

spectrum of the light in the detection plane instead of irradiance.  Specifically, one can 

measure the spectral density ( ),S ωr .  Wolf shows that in the detection plane of this 

modified Young’s double slit experiment [13], the spectral density ( ),S ωr  scales with 

the CSD ( )1 2, ,W ωr r .  This says that an individual can measure spatial coherence 

through the interference of light in the space-frequency domain.  

2.5.5 Spectral degree of coherence 

 Normalizing the CSD ( )1 2, ,W ωr r , as given in Eq. (80), an individual obtains a 

quantity referred to as the spectral degree of coherence (SDoC) ( )1 2, ,μ ωr r , where 

 ( ) ( )
( ) ( )

1 2
1 2

1 1 2 2

, ,
, ,

, , , ,

W

W W

ω
μ ω

ω ω
=

r r
r r

r r r r
. (82) 

As such, one can then relate the visibility ( ),V ωr  of the spectral density ( ),S ωr , 

detected in the modified Young’s double slit experiment, to the SDoC ( )1 2, ,μ ωr r  using 

the following relationship [13]: 

 ( ) ( ) ( )
( ) ( ) ( )1 2

max , min ,
, , ,

max , min ,

S S
V

S S

ω ω
ω μ ω

ω ω
−      = =
+      

r r
r r r

r r
. (83) 

Provided Eqs. (82) and (83), the magnitude of the SDoC ( )1 2, ,μ ωr r  provides a 

normalized unit of measure for the amount of spatial coherence in an optical disturbance 

at two points in space, 1r  and 2r , and angular frequency ω .  For instance, if 
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( )1 2, , 1μ ω =r r , two different points in space are correlated and the optical disturbance is 

spatially coherent; however, if ( )1 2, , 0μ ω =r r , two different points in space are 

uncorrelated and the optical disturbance is spatially incoherent.  A spatially partially 

coherent optical disturbance then satisfies ( )1 20 , , 1μ ω< <r r . 

2.5.6 Gaussian Schell-model source 

 Referencing Figure 7, in the source plane at 0v = , the CSD ( )1 2, ,W ωr r  takes the 

following form: 

 ( ) ( ) ( )*
1 2 1 2, , , ,W U Uω ω ω=ρ ρ ρ ρ , (84) 

where 1,2 1,2 1,2ˆ ˆx u= +x ur .  Consequently, the CSD ( )1 2, ,W ωρ ρ  of a Gaussian Schell-

model (GSM) source takes the following form [13]: 

 ( ) ( ) ( ) ( )1 2 1 2 2 1, , , , ,W S Sω ω ω μ ω= −ρ ρ ρ ρ ρ ρ , (85) 

such that ( )
2

2
2

2
, expS A

w
ω

 
= − 

  
ρ

r
 (86) 

and ( )
2

2

2
, expμ ω

 
= − 

  
ρ

r
. (87) 

Note that the parameters 2A , w , and   are space independent but are, in general, 

dependent on angular frequency ω .  This dependence is omitted for brevity in the 

notation.  Also note that upon substituting Eq. (85) into Eq. (82), the magnitude of the 

SDoC ( )2 1,μ ωρ ,ρ  becomes 



34 

 ( ) ( )
2

2 1
2 1 2 1 2

2
, , expμ ω μ ω

 −
= − = − 

 
 

ρ ρ
ρ ,ρ ρ ρ , (88) 

which depends only on the distance between two points and not on the points themselves.  

This is the classic characteristic of a Schell-model source [13]. 

 Similar to the Gaussian laser beam source [20], the three parameters 2A , w , and 

  physically describe the GSM source.  For instance, the source beam width w  is the 

radial distance ρ  where the source magnitude 2A  falls to 21 e  its initial on-axis value.  

This gives a nice gauge for the physical size of the emanating beam.  Likewise, the 

source coherence length   is the distance between two points 2 1−ρ ρ  where the 

magnitude of the SDoC ( )2 1,μ ωρ ,ρ  falls to 21 e  its initial on-axis value.  This is a 

direct result of the relationship found in Eq. (88).  In practice, if 2 1−  ρ ρ , then the 

two points are correlated and the GSM source is spatially coherent; conversely, if 

2 1−  ρ ρ , then the two points are uncorrelated and the GSM source is spatially 

incoherent.  Partial spatial coherence then satisfies 2 10 < − < ρ ρ . 

 In using the GSM source formulated in Eqs. (85)-(87), the analysis is tractable for 

a variety of fields of practical interest.  For example, the GSM source reduces to a point 

source when the source beam width approaches zero, 0w→ , or a plane wave when the 

source beam width approaches infinity, w→∞ .  One can also use the GSM source to 

model spatially coherent Gaussian laser beams.  Here, an individual allows the source 

coherence radius to approach infinity, →∞ .  On the other hand, when the source 

coherence radius approaches zero, 0→ , one obtains a spatially incoherent Gaussian 
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beam source.  This simplicity and versatility makes the GSM source ideal for 

investigations concerned with spatial coherence. 

2.5.7 Cross-spectral density matrix 

 When analyzing spatial coherence in the space-frequency domain with 

electromagnetic vector fields, one uses the cross-spectral density matrix (CSDM) 

( )1 2, ,ωW r r


 [13].  In general, the cross-spectral density matrix CSDM ( )1 2, ,ωW r r


 is 

the dyadic (outer product) created from electric field vectors of the following form: 

 

( ) ( ) ( ) ( )
( )
( ) ( )

ˆ ˆ, , , 1, 2

,
1,2      

,

l x l u l

x l

u l

E E l

E
l

E

ω ω ω

ω
ω

= + =

 
= = 
 

E r r x r u

r

r

, (89) 

such that 

( ) ( ) ( )
( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

†
1 2 1 2

1 * *
2 2

1

* *
1 2 1 2

* *
1 2 1 2

*
m 1 n 2

mn 1 2

, , , ,

,
, ,

,

, , , ,

, , , ,

, , m , ;  n ,

, , m , ;  n ,

x
x u

u

x x x u

u x u u

E
E E

E

E E E E

E E E E

E E x u x u

W x u x u

ω ω ω

ω
ω ω

ω

ω ω ω ω

ω ω ω ω

ω ω

ω

≡

 
 =    

 

 
 =
  

= = =

= = =

W r r E r E r

r
r r

r

r r r r

r r r r

r r

r r



, (90) 

where †  denotes Hermitian conjugate.  In Eq. (89), ( ),x lE ωr  and ( ),u lE ωr  are members 

of statistical ensembles which are at least wide-sense stationary, and in referencing 

Figure 7, are analytic functions in two mutually orthogonal directions perpendicular to 

the direction of propagation, i.e., the v direction.  This says that the vector-field result 

presented in Eq. (90) is analogous to the scalar-field result given above in Eq. (80).  
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Accordingly, the SD ( ),S ωr  and the SDoC ( )1 2, ,μ ωr r  are determined from the CSDM 

( )1 2, ,ωW r r


 using the following relationships [13]: 

 ( ) ( ){ }, Tr , ,S ω ω=r W r r


 (91) 

and ( )
( ){ }

( ){ } ( ){ }
1 2

1 2

1 1 2 2

Tr , ,
, ,

Tr , , Tr , ,

ω
μ ω

ω ω
=

W r r
r r

W r r W r r



  , (92) 

where { }Tr   denotes the trace operation and 1,2=r r .  This says that the vector-field 

result presented in Eqs. (91) and (92) directly relate to the scalar-field results given above 

in Eqs. (81)-(83).  The magnitude of the SDoC ( )1 2, ,μ ωr r  resulting from 

electromagnetic vector fields also provides a normalized unit of measure for the amount 

of spatial coherence, i.e., ( )1 20 , , 1μ ω≤ ≤r r . 

 Referencing Figure 7, the CSDM ( )1 2, ,ωW r r


 of a Gaussian Schell-model (GSM) 

source takes the following element-based form [13]: 

 ( ) ( ) ( ) ( ) ( )mn 1 2 m 1 n 2 mn 2 1, , , , , m , ;  n ,W S S x u x uω ω ω μ ω= − = =ρ ρ ρ ρr r , (93) 

such that ( ) ( )
2

2
m m 2

m

2
, exp m ,S A x u

w
ω

 
= − = 

  

ρ
ρ  (94) 

and ( ) ( )
2

2 1
mn 2 1 mn 2

mn

2
, exp m , ;  n ,B x u x uμ ω

 −
− = − = = 

  
ρ ρ

ρ ρ . (95) 

Note that the element-based parameters 2
mA , mw , mnB , and mn  are space independent but 

are, in general, dependent on angular frequency ω .  This dependence is omitted for 

brevity in the notation.  Also note that the CSDM ( )1 2, ,ωW r r


 given in Eqs. (93)-(95) is 
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analogous to the scalar-field result given above in Eqs. (85)-(87); however, there are 

additional constraints, viz., 

 mn 1 when m nB = = , (96) 

 mn 1 when m nB ≤ ≠ , (97) 

 *
mn nmB B= , (98) 

and mn nm=  . (99) 

Nonetheless, the GSM source presented in Eqs. (93)-(99) is ideal for investigations 

concerned with spatial coherence. 

2.6 Polarization 

 Given electromagnetic vector fields and the CSDM ( )1 2, ,ωW r r


, as defined 

above in Eq. (90), polarization relationships result.  The first polarization relationship of 

interest is the space- and angular-frequency-dependent degree of polarization (DoP) 

( ),P ωr  [13].  Particularly,  

 ( )
( ){ }
( ){ }( )2

4Det , ,
, 1

Tr , ,
P

ω
ω

ω
= −

W r r
r

W r r



 , (100) 

where again, { }Det   denotes the determinant operation and 1,2=r r .  In general, the 

DoP ( ),P ωr  provides a normalized unit of measure for the amount of polarization in an 

optical disturbance [13, 30].  When ( ), 1P ω =r , the optical disturbance is polarized, 

whereas when ( ), 0P ω =r , the optical disturbance is unpolarized.  Partial polarization 

then satisfies ( )0 , 1P ω< <r . 
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 The second polarization relationship of interest is the space- and angular-

frequency-dependent angle of polarization (AOP) ( ),ψ ωr .  Specifically, 

 ( ) ( ){ }
( ) ( ) ( )1
2Re , ,1

, tan , 2 2
2 , , , ,

xu

xx uu

W

W W

ω
ψ ω π ψ π

ω ω
−
 

= − < ≤  − 

r r
r

r r r r
. (101) 

This angle is depicted in Figure 8 in terms of a polarization ellipse.  The semi-major and 

semi-minor axes of this ellipse satisfy the following relationships [13]: 
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and 
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, (103) 

respectively.  As such, the space- and angular-frequency-dependent ellipticity ( ),ε ωr  

follows as 

 ( ) ( )
( ) ( ) ( ),

, tan , , 4 4
,

b

a

ω
ε ω χ ω π χ π

ω
= = − < ≤  

r
r r

r
, (104) 

where ( ),χ ωr  is the ellipticity angle, which is also depicted in Figure 8.  In general, the 

ellipticity ( ),ε ωr  provides a normalized unit of measure for the polarization state of the 

optical disturbance [23, 30].  When ( ), 1ε ω =r , the semi-major and semi-minor axes of 

the polarization ellipse equal each other, i.e., ( ) ( ), ,a bω ω=r r .  This corresponds to a 

circularly polarized optical disturbance.  On the other hand, when ( ), 0ε ω =r , the semi-
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minor axis of the polarization ellipse equals zero, i.e., ( ), 0b ω =r .  This corresponds to a 

linearly polarized optical disturbance.  An elliptically polarized optical disturbance then 

satisfies ( )0 , 1ε ω< <r . 

 
Figure 8.  A description of the polarization geometry used in the analysis. 

 The third polarization relationship of interest is the angular-frequency-dependent 

two-point Stokes vector ( )1 2, ,ωs r r  [13].  Per se, the components of this vector satisfy the 

following relationships: 
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or 
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History shows that the single point Stokes vector ( ), ,ωs r r , where 1,2=r r , is a very 

versatile tool in terms of analyzing polarization [23, 30].  For example, 

 ( ) ( ) ( ) ( )
( )

2 2 2
1 2 3

0

, , , , , ,
,

, ,

s s s
P

s

ω ω ω
ω

ω
+ +

=
r r r r r r

r
r r

, (107) 

which says that one can obtain the DoP ( ),P ωr  two separate ways within the analysis. 
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3 Background rough surface scattering literature review 

 As mentioned in Chapter 1, the purpose of this dissertation is to extend the rough 

surface scattering literature to include the effects of partially coherent electromagnetic 

beam illumination.  In support, recent publications derived a 2D scalar-equivalent 

solution for the scattering of partially coherent beams from statistically rough surfaces 

using the physical-optics (PO) approximation [10, 11].  These publications serve as the 

basis for this dissertation; however, modern-day research in rough surface scattering 

dates back to the work of Lord Rayleigh around the turn of the 20th century [31-33].  

With this said, one can distinguish the published literature in rough surface scattering into 

two main categories.  The first category deals with the research predominately concerned 

with the scattering of fully coherent and fully incoherent illumination from rough 

surfaces, whereas the second category deals with the research predominately concerned 

with the scattering of partially coherent illumination from rough surfaces.   

3.1 Fully coherent and fully incoherent illumination 

 Several different research communities come to mind when reviewing the rough 

surface scattering literature pertaining to fully coherent and fully incoherent illumination.  

The first couple identify themselves with the rough surface scattering research performed 

by the optics and photonics communities for metrology and manufacturing applications.  

The text written by Stover highlights this point [34].  Conversely, the second couple 

identify themselves with the rough surface scattering research performed by the radio-

frequency/microwave and visible/near-infrared communities for synthetic aperture radar 

and remote sensing applications.  The three-volume text by Ulaby et al. highlights this 

point [35].  With some exceptions, the common approaches employed by these research 
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communities are the geometrical-optics (GO), linear-systems, perturbation, PO, and full-

wave methods.  One may refer to works of Beckmann and Spizzichino [36], Ishimaru 

[37], Ogilvy [38], Voronovich [39], Warnick and Chew [40], Elfouhaily and Guérin [41], 

Nieto-Vesperinas [42], Maradudin [43], and Fung and Chen [44], for excellent 

summaries on rough surface scattering techniques using fully coherent and fully 

incoherent illumination. 

3.1.1 Geometrical-optics methods 

 When employing GO methods, one typically uses a bidirectional reflectance 

distribution function (BRDF) or its polarimetric counterpart, a polarimetric BRDF 

(pBRDF), to model rough surface scattering.  Nicodemus was the first to introduce the 

BRDF in 1965 [45].  Defined in radiometric terms, the BRDF is the reflected radiance 

divided by the incident irradiance [34].  As such, the BRDF typically characterizes how 

light reflects from surfaces in terms of a specular and diffuse component or a polarized 

and unpolarized component [46].  Both empirical and analytical BRDFs exist in practice.  

Measurements help in formulating empirical BRDFs.  For example, in preparation for the 

NASA Apollo missions, the analysis of light scattered from the lunar surface led 

researchers to conclude that the moon’s surface is composed of a particulate material 

[47].  On the other hand, both PO and GO approximations help in formulating analytical 

BRDFs [22].  Using the GO approximation, the seminal BRDF paper is that of Torrance 

and Sparrow [48], whereas the oft-referenced pBRDF paper is that of Priest and Meier 

[49].  Many other models exist based on their work.  These include BRDFs for 

applications in passive visible/near-infrared remote sensing [50] and computer graphics 

[51]—Sun’s literature review is particularly insightful [52]. 
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3.1.2 Linear-systems methods 

 In the late 1970s, Harvey and Shack developed a linear-systems formulation of 

rough surface scattering based on scalar diffraction theory [53-55].  In this approach, a 

surface transfer function characterizes the scattering process much like the optical 

transfer function does for aberrations found within an imaging system.  The Fourier 

transform of this surface transfer function then yields a scattered radiance distribution 

function closely related to the BRDF.  In the late 1980’s, Harvey et al. modified this 

theory to include the effects of grazing incidence at X-ray wavelengths [56].  This helped 

in the design of X-ray telescopes.  Most recently, Krywonos et al. modified the theory 

once again to a non-paraxial regime [57, 58].  This scalar non-paraxial linear-systems 

formulation of rough surface scattering claims to produce accurate results for rougher 

surfaces than the theories based on perturbation methods and for larger incident and 

scattered angles than the theories based on PO methods [59-61]. 

3.1.3 Perturbation methods 

 The perturbation approach to rough surface scattering models the surface 

roughness as a small perturbation relative to the case of a perfectly smooth surface.  As 

such, this approach requires that the surface roughness be small compared to the 

wavelength of the incident radiation [37].  The literature credits Rice with the 

groundbreaking paper on this subject [62]; however, it is important to note that Lord 

Rayleigh initiated the use of many of the mathematical techniques [31-33].  Thus, the 

literature often refers to the perturbation formulation of rough surface scattering as 

Rayleigh-Rice theory.  It is also important to note that different approaches found within 

the literature tend to yield similar results up to a fifth-order perturbation expansion [63]; 
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nonetheless, perturbation methods are the oldest and most widely used in the rough 

surface scattering literature. 

3.1.4 Physical-optics methods 

 The PO approach to rough surface scattering uses the PO approximation [14, 22], 

which is analogous to using Kirchhoff boundary conditions in physical or wave optics 

[23, 24].  This is done so that instead of satisfying the exact boundary conditions, as is 

done with perturbation methods, the field and its normal derivative simplify on the 

scattering surface.  Accordingly, this approach does not require that the surface roughness 

be small compared to the wavelength of the incident radiation [35].  The literature 

typically credits Beckmann with the trailblazing work on this subject [36], and one often 

sees the title of Beckmann-Kirchhoff theory or the Kirchhoff approximation used in 

practice.  It is important to note that the PO approximation typically allows an individual 

to calculate closed-form expressions where other approximations/theories would not.  

Such is the case when considering the scattering of fully coherent laser beam illumination 

from rough surfaces [64-68]. 

3.1.5 Full-wave methods 

 When employing full-wave methods, one typically uses the method of moments 

[14, 19, 21], the finite difference time domain [19, 69, 70], or the finite element method 

[19, 71, 72] to satisfy Maxwell’s equations and model rough surface scattering.  This 

problem has a rich history that dates back to the late 1970’s.  Some of the early notable 

work in this field is that of Bahar [73-76], Axline and Fung [77], Thorsos [78], and Collin 

[79, 81].  The topical review written by Warnick and Chew outlines many such full-wave 

techniques [40]. 
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3.2 Partially coherent illumination  

 The rough surface scattering literature pertaining to partially coherent 

illumination is the sole result of the proliferation of laser-based systems, such as those 

found in active-illumination systems for directed-energy and remote-sensing applications 

[82-85].  In recent times, the statistical behaviors of the laser-target interaction; in 

particular, the resulting speckle patterns, gained considerable interest.  Since the presence 

of speckle is typically detrimental in applications involving coherent light, techniques for 

suppressing speckle naturally followed.  Some of the early notable literature in such 

fields as metrology and remote sensing include the research efforts of Dainty [86], Fujii 

and Asakura [87, 88], Pedersen [89], Goodman [90], Parry [91], and Yoshimura et al. 

[92].  A recent text written by Goodman reviews many such techniques [93]. 

 One way to suppress speckle in active-illumination systems is to use partially 

coherent light instead of fully coherent laser light.  As a result, this research topic is 

becoming more and more popular due predominately to the work of Wolf in creating his 

unified theory of coherence and polarization [12, 13].  This unified theory helps in 

explaining correlation-induced changes in coherence, polarization, and spectrum of 

partially coherent light.  In particular, much of the published literature uses the properties 

of a partially coherent electromagnetic beam whose cross-spectral density matrix 

possesses a Gaussian Schell-model (GSM) form [13].  As the name implies, Schell was 

the first to conjecture such an electromagnetic source in 1961 [94, 95].  Since then, much 

effort has gone into understanding the physics behind GSM sources/beams.  Some of the 

published literature includes research in realizability conditions [96-98], experimental 

generation [98-100], numerical simulation [102-104], free-space propagation [105-107], 
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turbulent propagation [108-110], or sources/beams of similar form [111-113].  The 

topical review written by Gbur and Visser [114] and a recent text written by Korotkova 

[115] are most thorough in review. 

 In regards to the scattering of partially coherent illumination, most of the current 

literature deals with the scattering from low-contrast surfaces, i.e., where the index of 

refraction differs only slightly from unity [116-125].  These are scattering surfaces in 

which the Born approximation is valid [13, 23, 114, 115]—the topical review written by 

Zhao and Wang thoroughly reviews this problem [126].  In view of this, there are far 

fewer publications on the scattering of partially coherent illumination from rough 

surfaces.  Of the published work to date, the following approaches are common: the 

phase-screen model, the ABCD matrix formulation, and the coherent-mode 

representation. 

3.2.1 Phase-screen methods 

 In 1975, Goodman developed a phase-screen formulation of rough surface 

scattering based on scalar diffraction theory [90, 93].  In this approach, a phase-screen 

transmittance function characterizes the scattering process much like an aperture 

transmittance function does in physical or wave optics [24].  Hoover and Gamiz most 

recently employed this approach [127].  In so doing, Hoover and Gamiz assumed 

idealized quasimonochromatic plane-wave illumination.  This allowed for the application 

of the generalized Van Cittert-Zernike (VCZ) theorem to the mutual intensity function on 

the phase-screen surface.  The VCZ theorem relates the irradiance to the mutual intensity 

through a Fourier transform [13, 29].  Hoover and Gamiz’s work ultimately lead to the 

formulation of a generalized BRDF solution which was the sum of a coherent and 
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incoherent component; however, their work did not directly account for partially coherent 

beam illumination. 

3.2.2 ABCD-matrix methods 

 The text written by Andrews and Phillips best describes the principles behind the 

ABCD-matrix approach to rough surface scattering [128].  In general, the ABCD-matrix 

approach describes paraxial wave propagation through any complex optical system.  

When modeling the rough surface scattering using the ABCD-matrix approach, a phase-

screen transmittance function again characterizes the scattering process.  However, the 

inclusion of a soft-Gaussian aperture in the model accounts for the size of the scattering 

surface and accompanying diffraction effects.  Korotkova discusses this point in her texts 

[115, 129].  The research of Hansen et al. [130] and Yura and Hanson [131] used this 

approach to look at rough surface scattering from a target which produced partially 

developed speckle.  Wu and Cai also described an approach to sensing the scatter from 

rough surfaces using ABCD-matrix methods and partially coherent beam illumination via 

the GSM formulation [132]; however, this work is only applicable to small-angle 

scattering geometries with very rough surfaces [133-135]. 

3.2.3 Coherent-mode methods 

 The text written by Ostrovsky best describes the principles behind the coherent-

mode approach to rough surface scattering [136].  Huttunen et al. used this approach 

along with the PO approximation to look at the scattering from two-dimensional micro-

structured media [137], i.e., an isolated groove or slit in a perfectly conducting material 

substrate.  This unique approach to rough surface scattering may prove useful for future 

research efforts. 
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4 Methodology for the 3D vector solution 

 Figure 1 describes the geometry used to obtain a 3D vector solution for the 

problem proposed above in Chapter 1.  As shown, a zero mean 2D sample function 

( ),h h x y=  describes the surface height at the rough interface with standard deviation hσ  

and correlation length h .  This gives rise to a statistically rough surface S .  Spatially 

partially coherent electromagnetic beam illumination (parameters given below) emanates 

from the source plane specified by the coordinates ( ), ,x u v , which are different from the 

surface-plane coordinates ( ), ,x y z .  As such, the vector, ˆ ˆx u+x uρ = , points from the 

source plane origin to a transverse beam location since 0v =  in the source plane; the 

vector, ˆ ˆ ˆ0s s sy z= − +r x y z , points from the source-plane origin to the surface-plane 

origin; and the vector, ˆ ˆ ˆx y z= + +r x y z , points from the surface plane origin to an 

observation point.  Note that in the source and the surface planes, the x  axes align, which 

assumes that the surface of the homogeneous medium is statistically isotropic [38, 43] 

with impedance η .  Above, the medium is free space with impedance 0η . 

4.1 Incident field cross-spectral density matrix 

 As mentioned above, spatially partially coherent electromagnetic beam 

illumination emanates from the source plane.  With this in mind, the analysis uses a 

Gaussian Schell-model (GSM) form for the incident field cross-spectral density matrix 

(CSDM) ( )1 2,iW

ρ ρ [13, 94], such that 
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where   denotes correlation, †  denotes Hermitian conjugate, and ∗  denotes complex 

conjugate.  In Eq. (108), the element-based parameters mA  and nA  are the beam 

amplitudes in the x  and u  directions, respectively, sw  is the source width, and the 

element-based parameters mnB  and mn nm=   are the correlation amplitude and 

correlation length, respectively.  Note that mnB  follows additional constraints [13, 97]; 

namely,  

 
mn

mn
*

mn nm

1 when m n

1 when m n

B

B

B B

= =
≤ ≠

=
. (109) 

Also note that, in general, the incident field iE  and the parameters mA , sw , mn , and mnB  

are radian frequency ω  dependent [13]; however, the analysis omits this dependence for 

brevity in the notation7.  

                                                 
7.  The analysis presented in this chapter uses the MKS system of units in addition to the 

engineering sign convention for the time-harmonic variations (cf. Footnote 1, p. 5).  In 

addition, some of the notation is simplified from that presented in Chapter 2, e.g., 

inc i=E E .  This is done for brevity in the notation.   
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Figure 9.  The macro-scale (a) and micro-scale (b) scattering geometry of a 2D 
statistically rough surface S of length 2L and width 2L. 
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4.2 Scattered field 

 The present analysis uses the PO approximation to develop a far-field expression 

for the scattered field ( )sE r .  For this purpose, one can write the incident field ( )iE r  in 

terms of its spectrum ( ),i i i
x uk kT  using the plane-wave spectrum representation [25].  

Using the macro-scale scattering geometry given in Figure 9a, the following expressions 

result: 

 ( )
( )

( )2

1
, e e

2

i i
sji i i i j i i

x u x uk k dk dk
π

∞ ∞
− ⋅ − ⋅

−∞ −∞

=   k r k rE r T  (110) 

and ( ) ( ), e e
i i
x ujk x jk ui i i i

x uk k dxdu
∞ ∞

−∞ −∞

=  T E ρ , (111) 

which are valid in the source-free half space where 0v ≥ .  In Eqs. (110) and (111), 

0
ˆ ˆ ˆ ˆi i i i i

x u vk k k k= = + +k k x u v  is the incident propagation vector, 0 02k π λ=  is the free-

space wavenumber, and 0λ  is the free-space wavelength.   

 For most directed-energy and remote-sensing engagement scenarios, all of the 

observation points of interest are in the far field.  As such, the scattered electric field 

( )sE r  depends on the far-field vector potentials, ( )L r  and ( )N r , using the following 

relationships8: 

 ( ) ( ) ( ) ( ) ( )
0

0 0

e ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
4

jk r
s jk

r
η

π

−
 ≈ ⋅ − + ⋅ E r L r N rφθ − θφ θθ φφ , (112) 

                                                 
8.  In the far field, 2

02r D λ> , where 2D L≈  and r L ; consequently, the analysis 

neglects all contributions to the scattered field sE  that are in the radial r̂  direction 

because their contributions scale as 1 nr , where 2,3,n =  , and are negligible [14].   
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 ( ) ( ) 0 ˆe jk

S

ds′⋅′ ′=  r rL r M r , (113) 

and ( ) ( ) 0 ˆe jk

S

ds′⋅′ ′=  r rN r J r . (114) 

In Eqs. (112)-(114), θ̂  and φ̂  are unit vectors in the polar (vertical polarization) and 

azimuth (horizontal polarization) directions, respectively, ( )′M r  and ( )′J r  are the 

equivalent surface current densities, respectively, and the vector, ˆ ˆ ˆx y h′ ′ ′ ′= + +r x y z , 

points from the surface-plane origin to a point on the statistically rough surface S .   

 Using the micro-scale scattering geometry given in Figure 9b and the PO 

approximation [14, 22],  

 ( ) ( )i′ ′ ′≈ − ⋅M r M E r


 (115) 
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1 i
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
, (116) 

where ′J

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

are dyadics, such that 
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and ( ) ( )ˆ ˆ ˆ ˆ ˆ1 1r r⊥ ′ ′ ′ ′ ′ ′ ′ ′= × + + + M n s s p p


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In Eqs. (117) and (118), ( )ˆ ˆ ,x y′ ′ ′=n n  is the 2D unit outward normal vector given by 
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Furthermore, ˆ′s  and ˆ ′p  are the unit perpendicular and parallel vectors, whereas r⊥′  and 

r ′  are the corresponding Fresnel reflection coefficients, respectively.  Referencing the 

micro-scale scattering geometry in Figure 9b, the following relationships result: 

 
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ

i
i r r

i

×= = × = − ×
×

k n
s p s k p s k

k n
.  (121) 

Thus, in arriving at the relationships found in Eqs. (117) and (118), one must use the GO 

approximation [22]; specifically the law of reflection, such that ˆ ˆˆ ˆi r− ⋅ = ⋅n k n k 9. 

 Based on Eq. (119), it is important to note that the integration in Eqs. (113) and 

(114) is over the parameterized rough surface, i.e., ds dx dy′ ′ ′ ′= n .  Consequently, using 

Eq. (110) and substituting Eqs. (115)-(119) into Eqs. (113) and (114), one obtains the 

following expressions: 
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where ( )0
ˆˆ ˆ ˆ ˆi

x y zk q q q= − = + +q r k x y z , ′ ′ ′=L n M
 

, and ′ ′ ′=N n J
 

.  Without further 

simplifications, no analytical expression exists for the far-field vector potentials, ( )L r  

and ( )N r , given in Eqs. (122) and (123).  This is because the integrands in Eqs. (122) 

and (123) are complicated functions of surface height and surface slopes; namely, h′ ,  

xh ′ , and yh ′  with respect to the integrals over the parameterized rough surface.  One 

                                                 
9.  See Appendix B for more details. 
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typically simplifies these integrals using the stationary-phase (SP) approximation [22, 

35], i.e.,  

 ( ) ( )0 0
x y

∂ ∂′ ′⋅ ≈ ⋅ ≈
′ ′∂ ∂

q r q r . (124) 

As a result, the relationships found in Eq. (120) simplify, such that 

 yx
x y

z z

qq
h h

q q
′ ′≈ − ≈ − , (125) 

and in turn, ′ ≈L L
 

 and ′ ≈N N
 

 in Eqs. (122) and (123).  Similar to the PO 

approximation, the SP approximation physically dictates that reflection from the rough 

surface is locally specular and excludes all local diffraction effects [22, 35].   

4.3 Scattered field cross-spectral density matrix 

 The analysis presented here develops closed-form expressions for the scattered 

field CSDM ( )1 2,sW r r


.  In general, ( )1 2,sW r r


 depends on the scattered field ( )sE r , 

such that in the far field 

 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

†
1 2 1 2

* *
1 2 1 2

* *
1 2 1 2

pq 1 2

,

, p , ;  q ,

s s s

s s s s

s s s s

s

E E E E

E E E E

W

θ θ θ φ

φ θ φ φ

θ φ θ φ

≡

 
 =
  

= = =

W r r E r E r

r r r r

r r r r

r r



. (126) 

Using Eq. (112), one determines the matrix elements found in Eq. (126) as 

 

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

*
1 2 12 1 2 i 1 j 2

i , , j , ,

*
0 1 2 i 1 j 2

*
0 1 2 i 1 j 2

2
0

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ                         

ˆ ˆ ˆ ˆ                                

ˆ                                      

s

x y z x y z

W L L

L N

N L

θθ

η

η

η

= =

= Ω ⋅ ⋅

+ ⋅ ⋅

+ ⋅ ⋅

+

 r r i j r r

i j r r

i j r r

φ φ

φ θ

θ φ

( )( ) ( ) ( )*
1 2 i 1 j 2

ˆ ˆ ˆ N N ⋅ ⋅ i j r rθ θ

,  (127) 
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( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

*
1 2 12 1 2 i 1 j 2

i , , j , ,

*
0 1 2 i 1 j 2

*
0 1 2 i 1 j 2

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ                           

ˆ ˆ ˆ ˆ                                  

                                      

s

x y z x y z

W L L

L N

N L

θφ

η

η

= =

= Ω − ⋅ ⋅

+ ⋅ ⋅

− ⋅ ⋅

 r r i j r r

i j r r

i j r r

φ θ

φ φ

θ θ

( )( ) ( ) ( )2 *
0 1 2 i 1 j 2

ˆ ˆ ˆ ˆ   N Nη + ⋅ ⋅ i j r rθ φ

, (128) 

 

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

*
1 2 12 1 2 i 1 j 2

i , , j , ,

*
0 1 2 i 1 j 2

*
0 1 2 i 1 j 2

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ                           

ˆ ˆ ˆ ˆ                                 

                                       

s

x y z x y z

W L L

L N

N L

φθ

η

η

= =

= Ω − ⋅ ⋅

− ⋅ ⋅

+ ⋅ ⋅

 r r i j r r

i j r r

i j r r

θ φ

θ θ

φ φ

( )( ) ( ) ( )2 *
0 1 2 i 1 j 2

ˆ ˆ ˆ ˆ N Nη + ⋅ ⋅ i j r rφ θ

, (129) 

and 

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

*
1 2 12 1 2 i 1 j 2

i , , j , ,

*
0 1 2 i 1 j 2

*
0 1 2 i 1 j 2

2
0

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ                         

ˆ ˆ ˆ ˆ                                

ˆ                                      

s

x y z x y z

W L L

L N

N L

φφ

η

η

η

= =

= Ω ⋅ ⋅

− ⋅ ⋅

− ⋅ ⋅

+

 r r i j r r

i j r r

i j r r

θ θ

θ φ

φ θ

( )( ) ( ) ( )*
1 2 i 1 j 2

ˆ ˆ ˆ N N ⋅ ⋅ i j r rφ φ

, (130) 

where 
( )

0 1 0 2
2

12 0 2

1 2

e e

4

jk r jk r

k
r rπ

−

Ω = . (131) 

In addition, using Eqs. (113)-(125)10, one determines the element-based correlations 

found in Eq. (130) from the following relationships: 

                                                 
10.  In using Eqs. (113)-(125), one must assume that all observation points are in the far 

field (cf. Footnote 8, p. 51), the physical-optics approximation holds (cf. Appendix B), 

and the effects of shadowing/masking and multiple scattering are negligible [38, 42]. 
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( ) ( )
( )

( ) ( )
1 1 2 21 2 1 1 2 2 1 1 2 2

†
1 2 4

† †
1 1 1 2 2 2

1 2

1

2

, ,

      e e e e e e e e

                                        

i i
y yv s v s x x z z

L L L L
i i i i i i

x u x u

L L L L

jq y jq yjk r jk r jq x jq x jq h jq h

i i
x x

k k k k

dk dk

π
∞ ∞ ∞ ∞

− − − − −∞ −∞ −∞ −∞

′ ′−′ ′ ′ ′− − −

=

⋅ ⋅       

L r L r

L T T L
 

1 2 1 2 1 2
i i
u udk dk dx dx dy dy′ ′ ′ ′

, (132) 

 

( ) ( )
( )

( ) ( )
1 1 2 21 2 1 1 2 2 1 1 2 2

†
1 2 4

0

† †
1 1 1 2 2 2

1

1

2

, ,

      e e e e e e e e

                                        

i i
y yv s v s x x z z

L L L L
i i i i i i

x u x u

L L L L

jq y jq yjk r jk r jq x jq x jq h jq h

i
x

k k k k

dk dk

π η
∞ ∞ ∞ ∞

− − − − −∞ −∞ −∞ −∞

′ ′−′ ′ ′ ′− − −

= −

⋅ ⋅       

L r N r

L T T N
 

2 1 2 1 2 1 2
i i i
x u udk dk dx dx dy dy′ ′ ′ ′

, (133) 

 

( ) ( )
( )

( ) ( )
1 1 2 21 2 1 1 2 2 1 1 2 2

†
1 2 4

0

† †
1 1 1 2 2 2

1

1

2

, ,

      e e e e e e e e

                                         

i i
y yv s v s x x z z

L L L L
i i i i i i

x u x u

L L L L

jq y jq yjk r jk r jq x jq x jq h jq h

i
x

k k k k

dk d

π η
∞ ∞ ∞ ∞

− − − − −∞ −∞ −∞ −∞

′ ′−′ ′ ′ ′− − −

= −

⋅ ⋅       

N r L r

N T T L
 

2 1 2 1 2 1 2
i i i
x u uk dk dk dx dx dy dy′ ′ ′ ′

, (134) 

and 

( ) ( )
( )

( ) ( )
1 1 2 21 2 1 1 2 2 1 1 2 2

†
1 2 4 2

0

† †
1 1 1 2 2 2

1

1

2

, ,

      e e e e e e e e

                                        

i i
y yv s v s x x z z

L L L L
i i i i i i

x u x u

L L L L

jq y jq yjk r jk r jq x jq x jq h jq h

i
x

k k k k

dk dk

π η
∞ ∞ ∞ ∞

− − − − −∞ −∞ −∞ −∞

′ ′−′ ′ ′ ′− − −

=

⋅ ⋅       

N r N r

N T T N
 

2 1 2 1 2 1 2
i i i
x u udk dk dx dx dy dy′ ′ ′ ′

,  (135) 

where s sr = r .  Inherent in Eqs. (132)-(135) is the assumption that the incident field 

plane-wave spectrum is statistically independent of the rough surface.  This assumption is 

physically intuitive; thus, Eqs. (132)-(135) contain two separate correlations.   
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 The first correlation is with respect to the incident field plane-wave spectrum.  

This correlation is equivalent to a dyadic [cf. Eq. (111)]; namely,  

 ( ) ( )†
1 1 2 2, ,i i i i i i i

x u x uk k k k =T T

Φ , (136) 

where ( )1 2 1 2, , ,i i i i i i
x x u uk k k k

 
Φ = Φ .  The second correlation is with respect to the 

parameterized rough surface.  This correlation is a joint characteristic function χ′  of the 

random variables ( )1 1 1,h h x y′ ′ ′=  and ( )2 2 2,h h x y′ ′ ′= , such that 

 1 1 2 2e ez zjq h jq h χ′ ′− ′= .  (137) 

In practice, one must choose a form for this joint characteristic function.   

 A very common choice for the statistical distribution of the rough surface is to 

assume that the surface heights are Gaussian distributed and Gaussian correlated.  In so 

doing, the joint probability density function ( )1 2,p p h h′ ′ ′=  of the random variables 1h′  

and 2h′  takes the following form [36]:  

 ( )
2 2

1 2 1 2
2 22 2

21
exp

2 12 1 hh

h h h h
p

σπσ

 ′ ′ ′ ′ ′+ − Γ′  = −
′−Γ′  −Γ  

, (138) 

where ( )1 2 1 2,x x y y′ ′ ′ ′ ′Γ = Γ − −  is the surface autocorrelation function, such that 

 
( ) ( )2 2

1 2 1 2
2 2

exp exp
h h

x x y y   ′ ′ ′ ′− −
′Γ = − −   

       
. (139) 

History shows that one typically chooses Gaussian-Gaussian (G-G) models for analytical 

convenience [93]; however, other models exist in practice.  For example, the stretched 

exponential-stretched exponential (SE-SE) model better characterizes surfaces roughened 

by random industrial processes [138].  Basu et al. highlighted this point with profilometer 
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measurements of sandblasted metallic surfaces [139, 140].  Unfortunately no general 

analytical form exists for the SE joint characteristic function; nevertheless, the analysis of 

Basu et al. also showed that G-G models were still fairly good approximations for 

sandblasted metallic surfaces [139, 140].  Thus, Fourier transforming the joint probability 

density function p′  in Eq. (138) yields the desired joint characteristic function for the 

present analysis [36], i.e., 

 

( ) ( )

1 1 2 2
1 2

2
2 2 2
1 2 1 2

e e

exp exp
2

z zjq h jq h

h
z z h z z

p dh dh

q q q q

χ

σ σ

∞ ∞
′ ′−

−∞ −∞

′ ′ ′ ′=

  ′= − + Γ 
 

 
, (140) 

where ( )1 2 1 2 1 2 1 2, , , ; ,i i i i
x x u uk k k k x x y yχ χ′ ′ ′ ′ ′= − − .  Note that throughout the literature, 

numerous other surface models exist in addition to G-G and SE models11. 

 Using the relationships found in Eqs. (136)-(140), the integrands in Eqs. (132)-

(135) still contain complicated functions with respect to the source and surface 

parameters.  To simplify the analysis, one can separate these complicated functions into 

amplitude and phase terms, viz., 

 

( ) ( )
( )

0

†
1 2 4

1 2 1 2 1 2 1 2

1

2

e
L L L L

jk g i i i i
x x u u

L L L L

dk dk dk dk dx dx dy dy

π
∞ ∞ ∞ ∞

− − − − −∞ −∞ −∞ −∞

=

 
′ ′ ′ ′ 

 
       

L r L r

f



, (141) 

                                                 
11.  For example, a recent publication explored the use of non-Gaussian surface 

autocorrelation functions [141]. 
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( ) ( )
( )

0

†
1 2 4

0

1 2 1 2 1 2 1 2

1

2

e
L L L L

jk g i i i i
x x u u

L L L L

dk dk dk dk dx dx dy dy

π η
∞ ∞ ∞ ∞

− − − − −∞ −∞ −∞ −∞

= −

 
′ ′ ′ ′ 

 
       

L r N r

f



, (142) 

 

( ) ( )
( )

0

†
1 2 4

0

1 2 1 2 1 2 1 2

1

2

e
L L L L

jk g i i i i
x x u u

L L L L

dk dk dk dk dx dx dy dy

π η
∞ ∞ ∞ ∞

− − − − −∞ −∞ −∞ −∞

= −

 
′ ′ ′ ′ 

 
       

N r L r

f



, (143) 

and 

( ) ( )
( )

0

†
1 2 4 2

0

1 2 1 2 1 2 1 2

1

2

e
L L L L

jk g i i i i
x x u u

L L L L

dk dk dk dk dx dx dy dy

π η
∞ ∞ ∞ ∞

− − − − −∞ −∞ −∞ −∞

=

 
′ ′ ′ ′ 

 
       

N r N r

f



. (144) 

Here, ( )†
1 2

iχ′= ⋅ ⋅f L L
  

Φ , (145) 

 ( )†
1 2

iχ′= ⋅ ⋅f L N
  

Φ , (146) 

 ( )†
1 2

iχ′= ⋅ ⋅f N L
  

Φ , (147) 

and ( )†
1 2

iχ′= ⋅ ⋅f N N
  

Φ  (148) 

are amplitude dyadics that contains all of the amplitude terms, and 

 

( ) ( )

( ) ( ) ( )
( ) ( )

2 2 1 1

2 2 1 1 2 2 1

1 1 2 2 1 1

1
0 0

2 2

ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ ˆˆ ˆ

1

ˆ

ˆ

ˆ

i i
s v s v

i i i i
x x u u

g r y k r y k

x k x k y k y k
k k

x x y y

′ ′+ ⋅ − + ⋅      
⋅

′ ′ ′ ′+ − + −

=

′ ′ ′ ′⋅+ − ⋅ + ⋅ − ⋅x r x r y r y

y u

r

y v y v

 (149) 

is a common phase function that contains all of the phase terms.  Without further 

simplifications, no closed-form expressions exist for the integral relationships given in 

Eqs. (141)-(144). 
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 To simplify the integrals found in parenthesis in Eqs. (141)-(144), the analysis 

uses an asymptotic mathematical technique known as the method of stationary phase 

(MoSP) [26, 27, 37].  In so doing, one assumes that the amplitude terms are slowly 

varying in the interval ( ),−∞ ∞ .  One must also assume that the phase terms are rapidly 

oscillating in the interval ( ),−∞ ∞  except near special points where the rate of change is 

zero or “stationary.”  These special points are called critical points of the first kind [26].  

Away from these points, the phase terms are rapidly oscillating and the positive and 

negative contributions of the integrand in Eq. (144) effectively cancel out.  

 Using the MoSP to simplify Eqs. (141)-(144) has two implications with regards to 

the macro-scale scattering geometry given in Figure 9a.  The first implication is with 

respect to the v  component of the incident propagation vector ik ; namely, 

 ( ) ( )2 22
0

i i i
v x uk k k k= − − . (150) 

In particular, the analysis assumes that i i
v xk k  and i i

v uk k ; as a result,  

 ( ) ( )
0 0 0 0 0

2 2
1,2 1,2 1,2

0
0 0

in ,  ,  , and 

in 
2 2

i i i
v x u

k

k k k
k g

k k


≈ 

− −


f f f f
   
   

. (151) 

This physically implies that the incident electromagnetic fields are highly directional 

being predominately directed along the v  direction in Figure 9a.  The second implication 

is that the distance from the source-plane origin to the surface-plane origin must be much, 

much greater than half the surface length, i.e., sr L , which is typically the case for 

most directed-energy and remote-sensing engagement scenarios.  To provide some idea 
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of how much greater, letting 5sr L= , 25sr L= , and 100sr L=  results in percentage 

errors of 18% , 4% , and 1% , respectively.  As such, using the MoSP to simplify Eqs. 

(141)-(144) results in the following relationships: 

 ( ) ( )
( )

2
† 0

1 2 2 22 s

k

rπ
≈L r L r


 ,  (152) 

 ( ) ( )
( )

2
† 0

1 2 2 2
02 s

k

rπ η
≈ −L r N r


 ,  (153) 

 ( ) ( )
( )

2
† 0

1 2 2 2
02 s

k

rπ η
≈ −N r L r


 ,  (154) 

and ( ) ( )
( )

2
† 0

1 2 2 2 2
02 s

k

rπ η
≈N r N r


 ,  (155) 

where 

 , 


 , 


 , and 


  are dyadics that contain all of the amplitude and phase terms 

evaluated at the critical points of the first kind which one determines as12  

 
( )00

1,2 1,2 1,2 1,2

ˆ ˆi i
x u

s s

kk
k x k y

r r

⋅
′ ′≈ ≈

y u
. (156) 

The analysis explicitly defines 

 , 


 , 


 , and 


  in Appendix D for different material 

substrates, i.e., dielectrics, conductors, and a perfect electrical conductor (PEC). 

 Provided Eqs. (152)-(156) and Appendix D, one is still left with integrals with 

respect to the parameterized rough surface.  These integrals take the following element-

based form: 

                                                 
12.  See Appendix C for more details. 
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y u

y v

, (157) 

where ( )m , ;  n ,x u x u= = .  In Eq. (157), mn
iΦ  is equivalent to the Fourier transform of 

the incident field CSDM elements found in Eq. (108), i.e.,  
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∞ ∞ ∞ ∞
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   

 

 

r r



, (158) 

where ( )m , ;  n ,x u x u= =  and 

 ( ) ( )
mn mn

mn mn mn mn2 2 2 2 2 2
mn mn mn mn mn

1 1

4 2 4 4
mn

s

a b
a b b a b

w a b a b
= + = = =

− −



. (159) 

 One can reduce the integrals found in Eq. (157) into closed-form expressions.  For 

this purpose, the analysis first performs the following variable transformations:  

 1 2 1 2 1 2 1 2d a d ax x x x x x y y y y y y′ ′ ′ ′ ′ ′ ′ ′= − = + = − = + , (160) 

so that Eq. (157) simplifies into the following expression: 
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where ( )m , ;  n ,x u x u= =  and  

 1,2 1,2 1,2 1,2 1,2 1,2
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆx y zϑ ϑ ϑ= ⋅ = ⋅ − ⋅ = ⋅ − ⋅x r y r y v z r z v . (162) 

From here, one must handle the exponential term containing the surface autocorrelation 

function (i.e., the first exponential term inside the integrals above).  History shows that 

there are two separate ways to go about this.  The first is to expand the said exponential 

term in a Taylor series and proceed with the evaluation of the integrals [36].  

Mathematically, this approach is applicable to all surfaces; however, because the series is 

slowly convergent, the analysis limits this approach to smooth-to-moderately rough 

surfaces—the next sub-section develops a closed-form expression for this case.  The 

other approach involves expanding the surface autocorrelation function [cf. Eq. (139)] in 

a Taylor series and retaining only the first and second order terms [36].  This treatment is 
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applicable to very rough surfaces—sub-section 4.3.2 develops a closed-form expression 

for this case. 

4.3.1 Smooth-to-moderately rough surfaces 

 When considering smooth-to-moderately rough surfaces, one must expand the 

exponential term containing the surface autocorrelation function found in Eq. (161) in a 

Taylor series.  Specifically, 
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Substitution of Eq. (163) into Eq. (161) allows one to then separate the integrals over the 

parameterized rough surface, i.e., 

 

( ) ( ) ( )

( ) ( )

( )

2 22 22
0 1 22 20m n mn

mn 1 22 2
0mn mn

2 2
20 0

mn mn 1 22
2

2 2
2 20

mn mn2 2
2

0

exp
2 !4

exp exp
2 2

exp exp
2

exp
2

a

a

l

h z zh
z z

l

L

a x x a
sL

L x

d d
h sx L

a s x
s

kkA A B

la b

k k
a b x j x

r

kl
x a b x

r

k
j x r

r

σ ϑ ϑσπ ϑ ϑ

ϑ ϑ

ϑ

∞

=

−

−

−

 
Ψ = − + −  

   − − −     

   
− − +   
   

− −












( )

( ) ( ) ( )

( ) ( )

( ) ( )

1 2

222
0 2 0

mn mn 1 22
2

22 2
02 2

mn mn2 2
2

20
1 2

ˆ ˆ
exp exp

2 2

ˆ ˆ
exp exp

2

ˆ ˆexp
2

a

a

x d d a

L

a y y a
sL

L y

d d
h sy L

a s y y d d a
s

x dx dx

k k
a b y j y

r

kl
y a b y

r

k
j y r y dy dy

r

ϑ

ϑ ϑ

ϑ ϑ

−

−

−

 
+   

 
 ⋅  − − −      

 ⋅ 
− − +  

    
  − ⋅ − +   





y u

y u

y u






. (164) 



65 

This is a very important step in the analysis.  It allows for the development of a closed 

form expression for smooth-to-moderately rough surface conditions without having to 

convert to polar coordinates.   

 It is a relatively straight forward process to evaluate the integrals over dx  and dy  

in Eq. (164); however, complex error functions result due to the parameterized rough 

surface [10, 11].  These complex error functions model diffraction caused by the incident 

radiation over-illuminating the rough surface and are negligible under certain conditions.  

As such, the present goal in the analysis is to determine conditions in which one can 

extend the dx  and dy  limits of integration to ( ),−∞ ∞  in Eq. (164).  The necessary 

conditions for these approximations occurs when 
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where xδ  and yδ  are user-defined parameters and denote the points at which the 

exponential functions with respect to dx  and dy  no longer maintain significant value in 

Eq. (164).  Furthermore, if 0l =  and 2d dx y L= = , the arguments of the exponentials are 

at a minimum and the dx  and dy  limits of integration are at a maximum.  One then 

derives the following conditions from Eq. (165): 
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These conditions physically mean that the projected fully coherent incident beam size 

must “fit” on the rough surface.  In satisfying these conditions the dx  and dy  limits of 

integration extend to ( ),−∞ ∞  in Eq. (164).  Note that if x yδ δ δ= = , the second 

condition in Eq. (166) becomes more stringent since ( )ˆ ˆ cos 1iθ⋅ = − ≤y u  [cf. Figure 

9a].  One then determines how well the incident beam “fits” by δ —the smaller the δ , 

the more accurate the approximation.  Also note that if the projected fully coherent 

incident beam size does not “fit” on the rough surface, complex error functions result [10, 

11], and one has to evaluate the follow-on integral expression numerically. 

 Assuming that the conditions in Eq. (166) hold, subsequent evaluation of the 

integrals over dx  and dy  simplifies Eq. (164), so that13 

                                                 
13.  One must complete the square in the exponential terms and use of the following 

integral relationship [125, p. 266]: ( ) ( ) ( )2 2exp exp exp 4at jbt dt a b aπ
∞

−∞
 − − = −  , 

where 0a > . 
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where ( )m , ;  n ,x u x u= =  and  
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Similar to the analysis presented above, one can extend the ax  and ay  limits of 

integration to ( ),−∞ ∞  in Eq. (164) and subsequently Eq. (167).  Here, the necessary 

conditions for these approximations occurs when 
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where mn
mn

sw
α =   (170) 

is the element-based source ratio, and xδ  and yδ  are again user-defined parameters, 

respectively.  They denote the points at which the exponential functions with respect to 
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ax  and ay  no longer maintain significant value in Eq. (167).  The conditions given in Eq. 

(169) physically mean that the projected partially coherent incident beam size must “fit” 

on the rough surface.  In satisfying these conditions the ax  and ay  limits of integration 

extend to ( ),−∞ ∞  in Eq. (167).  Additionally, if x yδ δ δ= = , the second condition in Eq. 

(169) becomes the most stringent within the smooth-to-moderately rough surface 

analysis.   

Assuming that the conditions in Eq. (169) hold, one can then evaluate the 

remaining integrals in Eq. (167)14.  In so doing, the following closed-form expression 

results: 
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  (171) 

where ( )m , ;  n ,x u x u= =  and  

                                                 
14.  See Footnote 13, p.66. 
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At first glance, the summation somewhat obscures the physical interpretation of Eq.  

(171).  However, further examination of this closed-form expression shows that the 

exponential terms on the third and fourth lines generally drive the angular extent of the 

spectral density (SD), whereas the exponential terms on the fourth and fifth lines 

generally drive the angular extent of the spectral degree of coherence (SDoC).  Before 

exploring these points further in the next chapter, the analysis considers very rough 

surfaces15.  

4.3.2 Very rough surfaces 

 When considering very rough surfaces in the analysis, one must expand the 

surface autocorrelation function found inside the first exponential term in Eq. (161).  

Here, one retains only the first and second order terms in a Taylor series.  To make this 

concept manifest, the analysis first writes the joint characteristic function found in Eq. 

(140) in an alternative form, where 
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In the case of very rough surface conditions, i.e., 

                                                 
15  The following criterion: 00.5hσ λ≥ , helps in discerning the transition point from the 

smooth-to-moderately rough surface regime to the very rough surface regime and is an 

empirically determined relationship within the analysis. 



70 

 2 2
0 1 2 1h z zk σ ϑ ϑ  , (174) 

the alternative form found in Eq. (173) maintains significant value when  
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Since all of the observation points of interest are in the far field, if one then considers that 
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the relationship found in Eq. (175) is only possible for small dx  and dy .   

 With Eqs. (173)-(176) in mind, it makes since to expand the exponential functions 

found in Eq. (175) and retain only the first and second order terms, so that 
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Substituting Eq. (177) into Eq. (161) allows one to again separate the integrals over the 

parameterized rough surface.  As mentioned before, this allows for the development of a 

closed-form expression for very rough surface conditions without having to convert to 

polar coordinates.  Carrying out the subsequent integrations16, the following closed-form 

expression results: 

                                                 
16.  See Footnote 13, p. 66. 
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where ( )m , ;  n ,x u x u= =  and 

 

( )
( )( )

( )
( ) ( )

2 2 2 2 2
mn 0 mn mn 0 1 2

22 2 2 2 2
mn 0 mn mn 0 1 2

2 2
mn mn mn mn

22 2
mn mn mn mn

2

ˆ ˆ 2

4

ˆ ˆ 4

x
h s h z z

y
h s h z z

x x
s h

y y
s h

k a b k r

k a b k r

r a b

r a b

σ ϑ ϑ

σ ϑ ϑ

= + +

= + ⋅ +

= + −

= ⋅ + −

y u

y u













 

 

. (179) 

In using the closed-form expression given in Eq. (178), the analysis must satisfy the 

conditions found in Eq. (169).   

 The closed-form expression obtained in Eq. (178) is remarkably physical.  For 

instance, the exponential terms on the second and third lines of Eq. (178) are 

predominately responsible for the angular extent of the scattered SD.  These exponential 

terms are functions of the sum of the squares of the observation projections, i.e., 1,2xϑ  and 

1,2yϑ .  On the other hand, the exponential terms on the fourth and fifth lines of Eq. (178) 

determine the angular extent of the scattered SDoC.  Note that these terms are functions 
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of the difference of the observation projections, i.e., 1 2x xϑ ϑ−  and 1 2y yϑ ϑ− .  Thus, one 

can state that the closed-form expression obtained in Eq. (178) allows the scattered field 

CSDM to maintain its GSM form with respect to 1,2xϑ  and 1,2yϑ .  The analysis examines 

these points more closely in the next chapter. 
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5 Exploration of the 3D vector solution 

 The purpose of this chapter is to explore the 3D vector solution obtained above in 

Chapter 4.  As stated in Chapter 1, by formulating the 3D vector solution in a manner 

consistent with Wolf’s unified theory of coherence and polarization [12, 13], all physical 

implications inherent in Wolf’s work apply here.  Accordingly, one can readily formulate 

the scattered spectral degree of coherence (SDoC) ( )1 2,sμ r r , the normalized scattered 

spectral density (SD) ( )s
NS r , and the scattered degree of polarization (DoP) ( )sP r  from 

the closed-form expressions developed above for the scattered field cross spectral density 

matrix (CSDM) ( )1 2,sW r r


.  The analysis uses the following relationships [13]: 

 ( )
( ){ }

( ){ } ( ){ }
1 2

1 2

1 1 2 2

Tr ,
,

Tr , Tr ,

s

s

s s
μ =

W r r
r r

W r r W r r



  , (180) 
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s
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N s
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r

W r r



 , (181) 

and ( )
( ){ }
( ){ }( )2

4Det ,
1

Tr ,

s

s

s
P = −

W r r
r

W r r



 , (182) 

where { }Tr   denotes the trace operation, { }Det   denotes the determinant operation, 

and 1,2=r r  corresponds with a single observation point.  These relationships contain 

measurable quantities in practice and serve as metrics in which to compare the 3D vector 

solution to previously validated solutions and empirical measurements.   

 Much of the analysis presented in this chapter uses a 5.08 cm  5.08 cm×  

Labsphere Infragold coupon [142].  It also uses a nominal far-field setup, where 
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0 10.6 μmλ = , 1,2 185 cmsr r= = , and 1.9 mmsw = .  As such, the Labsphere Infragold 

coupon maintains the following complex index of refraction: 13.45 63.62n j= −  [143].  

Note that a KLA Tencor Alpha-Step IQ Surface Profiler [144] determined the surface 

statistics of the Labsphere Infragold coupon as 11.09 μmhσ = , 116.9 μmh = , and 

0.2441 radhσ ′ =  [cf. Eq. (191)] using four 1 cm scans (step size 0.2 μm ).  These surface 

statistics relate to very rough surface conditions [cf. Eq. (174)].   

5.1 Comparison with the 2D scalar-equivalent solution 

 In order to compare the 3D vector solution to the previously validated 2D scalar-

equivalent solution [10, 11], the analysis assumes horizontally polarized (s-pol) 

illumination and an in-plane scattering geometry, i.e., 0u ux xuA B B= = =  and 

1,2 90s sφ φ °= = .  This provides the setup needed to make a fair comparison between the 

two solutions. 

5.1.1 Angular spectral degree of coherence radius 

 An individual can formulate a closed-form expression that describes the angular 

extent over which the scatter field is correlated, i.e., the angular SDoC radius.  In general, 

the angular SDoC radius provides a gauge for the average speckle size observed in the far 

field and is a quantity of importance when dealing with directed-energy and remote-

sensing applications.  Note that the analysis presented here is highly analogous to that 

performed for the 2D scalar-equivalent solution [10, 11].   

 Because of the summation in Eq. (171), it is not possible to derive a closed-form 

expression for the angular SDoC radius for smooth-to-moderately rough surfaces.  Thus, 

the present analysis is limited to very rough surfaces.  Assuming that Eq. (169) holds, so 
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that the incident illumination “fits” on the rough surface, the exponential terms on the 

fourth and fifth lines of Eq. (178), in general, determine the angular extent of the 

scattered SDoC.  Provided s-pol illumination and an in-plane scattering geometry, only 

xxΨ  exists within the analysis, and the difference of the observation projections simplify, 

such that 

 ( ) ( ) ( ) ( )2 2
1 2 1 1 2 2sin cos sin cos 0s s

x xϑ ϑ θ φ θ φ− = − =  (183) 

and ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2 1 2sin sin sin sin sin sins s s s s s
y yϑ ϑ θ φ θ φ θ θ− = − = − . (184) 

Consequently, the following “correlation” exponential γ  results from Eq. (178) for xxΨ : 
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Upon setting γ  equal to 1 e , the following expression results: 
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Because the magnitude of the argument of γ  is large (specifically the 2 4 2
0 1 2s h z zk r σ ϑ ϑ  

term), ( ) ( )1 2sin sins sθ θ≈  for Eq. (185) to have a significant value.  This implies that 

1 2
s sθ θ≈  and that γ  is approximately a function of 1 2

s s sθ θ θΔ = − .  Using this insight, Eq. 

(186) simplifies because 
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and 
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After some simple algebra, the expression for the angular SDoC radius becomes 
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where xx xx swα =   is a source ratio [cf. Eq. (170)], ( ) ( )2cos coss iϖ θ θ=  is a projection 

ratio, s s sw rΩ =  is the source half angle (viewed from the rough surface), and  

 2 h
h

h

σσ ′ = 
 (191) 

is the surface slope standard deviation [36]17.   

                                                 
17.  Based on the assumptions used within the analysis [cf. Footnote 10, p.56], valid 

surface slope standard deviations must satisfy the following condition: 0.25 radhσ ′ ≤  

[35, 66]. 
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 For all intents and purposes, one can neglect the term involving s hσ ′Ω  in Eq. 

(190).  This ratio results in values on the order of 410−  for most directed-energy and 

remote-sensing engagement scenarios.  With this said, one can also claim that the source 

term contained in the radical above is much greater than the surface term.  Thus, 

factoring out the source term and using the binomial approximation yields 
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. (192) 

For most cases of interest, one can neglect the second term contained within the 

parenthesis in Eq. (192).  It only provides a “small” correction to the angular SDoC 

radius due to the surface parameters.  As a result, the angular SDoC radius becomes a 

function of only the source parameters.  This is highly analogous to the result obtained by 

the 2D scalar-equivalent solution [10, 11].  It is also consistent with the classic, narrow-

band, fully coherent illumination result derived by Goodman [90]. 

5.1.2 Angular spectral density radius 

 An individual can also formulate a closed-form expression for the angular SD 

radius.  In general, the angular SD radius provides a gauge for the size of the average 

power distribution observed in the far field.  This is a quantity of importance when 

dealing with directed-energy and remote-sensing applications.  The analysis, yet again, is 

highly analogous to that performed for the 2D scalar-equivalent solution [10, 11].   
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 As was the case for the angular SDoC radius, the summation in Eq. (171) does not 

allow for a closed-form expression for the angular SD radius for smooth-to-moderately 

rough surfaces.  Furthermore, one must limit the analysis to near normal incidence, so 

that ( )ˆ ˆ cos 1iθ⋅ = ≈y u .  Assuming that Eq. (169) holds, so that the incident illumination 

“fits” on the rough surface, the exponential terms on the second and third lines of Eq. 

(178) predominantly determine the angular extent of the scattered SD for very rough 

surfaces.  Provided s-pol illumination, only xxΨ  exists within the analysis.  In addition, 

for an in-plane scattering geometry and a single observation point, i.e., 1,2=r r , the 

observation projections simplify, such that 

 ( ) ( )1,2 sin cos 0s s
x xϑ ϑ θ φ= = =  (193) 

and ( ) ( ) ( )1,2 sin sin sins s s
y yϑ ϑ θ φ θ= = = . (194) 

Consequently, the following “power-distribution” exponential β  results from Eq. (178) 

for xxΨ : 
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Upon setting β  equal to 1 e , the following expression results: 

 ( ) ( ) ( )22
2 2 2

1 e 1 e 2 2
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1 2
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2
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s h
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Since ( ) ( )2 2
1 e 1 esin 1 coss sθ θ= − , Eq. (196) manipulates into a quadratic equation in terms 

of ( )1 ecos sθ , where 



79 

 ( ) ( ) ( ) ( ) ( )22 2 2 2 2
1 e 1 e 2 2

0

1 2
0 1 2 cos 4 cos 2 1

2
xxs s

h h s h
sk w

α
σ θ σ θ σ′ ′ ′

+
= + + + Ω + + − . (197) 

Solving this quadratic equation (only the positive root makes physical sense), the angular 

SD radius becomes 
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For most cases of interest, the source and surface terms contained within the radical in 

Eq. (198) are negligible.  They only provide a “small” correction to the angular SD radius 

due to the source parameters.  Thus, the angular SD radius becomes a function of only the 

surface parameters.  This is highly analogous to the result obtained by the 2D scalar-

equivalent solution [10, 11]. 

5.1.3 Fully coherent illumination validation 

 In order to validate the angular radii developed above, the present analysis uses 

the Labsphere Infragold coupon and the nominal far-field setup (described above) with 

fully coherent illumination at normal incidence, so that 1000xx sw=  and 0iθ =  .  

Provided this setup, Figure 10 shows a comparison between the 3D vector solution, the 

2D scalar-equivalent solution [10, 11], and a full-wave 2D method of moments (MoM) 

solution [139, 140].  The 2D MoM solution obtained the scattered field from 400 

independent rough surface realizations simulated using the method described by Yura 

and Hanson [145] with a Gaussian-Gaussian (G-G) probability distribution function 
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(PDF) [cf. Eq. (138)]18.  Note that the results match up well and that the closed-form 

expressions for the angular radii behave as predicted.  For instance, the dashed vertical 

line in Figure 10a, which represents the angular SDoC radius [cf. Eq. (192)], identifies 

the correct 1 e  location, whereas the dashed vertical lines in Figure 10b, which represent 

the angular SD radius [cf. Eq. (198)], come close to the 1 e  locations.  The analysis 

performed in the next sub-section further explains this small disagreement with respect to 

the angular SD radius; nonetheless, the results in Figure 10 help to validate the 3D vector 

solution assuming fully coherent illumination and very rough surface conditions. 

 
Figure 10.  Comparison between a full-wave 2D method of moments (MoM) 
solution, the 2D scalar-equivalent solution, and the 3D vector solution for fully 
coherent illumination at normal incidence of a very rough conducting surface.  (a) 
shows the magnitude of the scattered spectral degree of coherence as a function of 
the difference between two polar angles, whereas (b) shows the normalized scattered 
spectral density as a function of a single polar angle. 

                                                 
18.  A full-wave 3D MoM solution is unrealizable at optical wavelengths with the current 

fully coherent setup—the computational sampling and memory requirements are far too 

great for modern desktop computers. 
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 In order to validate the 3D vector solution for smooth-to-moderately rough 

surface conditions, the analysis assumes the same nominal far-field setup used above but 

varies the surface height standard deviations of the Labsphere Infragold coupon, so that 

0 0 00.0 ,  0.1 ,  and 0.3hσ λ λ λ= .  Figure 11 shows the results for this setup.  Note that for 

both the magnitude of the scattered SDoC (Figure 11a) and the normalized scattered SD 

(Figure 11b), the results deviate for small hσ  between the 3D and 2D solutions.  This is 

most likely due to fact that the 2D scalar-equivalent solution is confined to a single plane, 

whereas the 3D vector solution is not.  The results of Hyde et al. showed excellent 

agreement between the 2D scalar-equivalent solution and a full-wave 2D MoM solution 

using similar setup parameters [11].  With this said, the 2D solutions do not capture all 

the physics related to the 3D vector problem—the next sub-section examines this point 

further at normal and non-normal incidence using partially coherent illumination. 

 
Figure 11.  Comparison between the 2D scalar-equivalent and 3D vector solutions 
for fully coherent illumination at normal incidence of smooth-to-moderately rough 
conducting surfaces.  (a) shows the magnitude of the scattered spectral degree of 
coherence as a function of the difference between two polar angles. (b) shows the 
normalized scattered spectral density as a function of a single polar angle. 
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5.1.4 Partially coherent illumination validation 

 The present analysis varies the coherence of the incident illumination, so that 

2, 1, 0.5, and 0.25xxα =  [cf. Eq. (170)], where 1.9 mmsw =  and xx xx swα= .  These 

values relate to a coherent source and to a relatively incoherent source, respectively.  In 

addition, the present analysis varies the surface roughness of the Labsphere Infragold 

coupon, so that 0.01 radhσ ′ = , 0.05 rad , 0.1 rad , and 0.25 rad [cf. Eq. (191)], where 

116.9 μmh =  and 2h h hσ σ ′=  .  These values relate with smooth-to-very rough 

surface conditions, respectively.  Figure 12 and Figure 13 below show results for the 

magnitude of the scattered SDoC and the normalized scattered SD for partially coherent 

illumination at normal incidence, i.e., 0iθ =  .  Note the excellent agreement between the 

2D and 3D solutions (similar to that achieved for the fully coherent illumination 

analysis).   

 Figure 14 shows the results for the normalized scattered SD for partially coherent 

illumination at non-normal incidence, i.e., 40iθ =  .  Here, the results deviate between the 

2D and 3D solutions as hσ ′  increases.  This deviation is deterministic in practice.  For s-

pol illumination and an in-plane scattering geometry, the 2D and 3D solutions have the 

same functional dependence in the exponential term which predominately drives the 

angular extent of the scattered SD.  The analysis explored this functional dependence 

above in the derivation of the angular SD radius.  With that said, there is a small 

difference contained in the amplitude terms when comparing the 2D and 3D solutions.   
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Figure 12.  Comparison between the 2D solution (circles) and 3D solution (lines) for 
partially coherent illumination at normal incidence of smooth-to-very rough 
conducting surfaces.  (a)-(d) shows the magnitude of the scattered spectral degree of 
coherence as a function of the difference between two polar angles for varying 
source parameter ratios and surface slope standard deviations. 
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Figure 13.  Comparison between the 2D solution (circles) and 3D solution (lines) for 
partially coherent illumination at normal incidence of smooth-to-very rough 
conducting surfaces.  (a)-(d) shows the normalized scattered spectral density as a 
function of a single polar angle for varying source parameter ratios and surface 
slope standard deviations. 
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Figure 14.  Comparison between the 2D solution (circles) and 3D solution (lines) for 
partially coherent illumination at non-normal incidence of smooth-to-very rough 
conducting surfaces.  (a)-(d) shows the normalized scattered spectral density as a 
function of a single polar angle for varying source parameter ratios and surface 
slope standard deviations. 
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 The 3D vector solution contains a 1 x y
xx xx   amplitude factor; whereas, the 2D 

scalar-equivalent solution contains only a 1 y
xx  amplitude factor [cf. Eqs. (172) and 

(179)].  These amplitude factors (in addition to polarization terms) appear in front of the 

exponential term which predominantly drives the angular extent of the scattered SD.  

Functionally, these amplitude factors tend to “push” the scattered SD to the right, 

whereas the polarization terms tend to “pull” the scattered SD to the left (for positive 

incident angles—the opposite is true for negative incident angles).  The additional 

amplitude factor contained in the 3D solution pushes the scattered SD, so that the peak of 

the far-field power distribution always aligns with the specular direction, i.e., where 

s iθ θ= .  Conversely, Figure 14 shows that for the 2D solution, as hσ ′  increases the SD 

peak shifts more and more to the left and does not align with the specular direction19.  

This is due to the lack of the aforementioned amplitude factor.   

 Before moving on in the analysis, it is important to note that these said amplitude 

factors are also responsible for the discrepancy seen in the angular SD radius (cf. the 

vertical dashed lines in Figure 10 and Figure 13).  The angular SD radius only comes 

close to the 1 e  locations because these amplitude factors tend to “push” out the wings of 

the far-field power distribution.  Nevertheless, this behavior is deterministic in nature and 

the angular SD radius, as derived above, adequately characterizes the behavior of the 

scattered SD.   

  

                                                 
19.  The full-wave 2D MoM solution of Basu et al. shows similar behavior [139, 140]. 
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5.2 Comparison to a polarimetric bidirectional distribution function 

 The analysis presented here compares the 3D vector solution to a polarimetric 

bidirectional distribution function (pBRDF) developed by Priest and Meier [49].  In 

general, the pBRDF of Priest and Meier assumes fully incoherent illumination; thus, there 

is no coherence information contained within the solution.  Instead, the pBRDF of Priest 

and Meier provides the Mueller matrix for statistically rough surfaces that are 

characterized by a G-G PDF [cf. Eq. (138)]; as a result, if the analysis assumes 

unpolarized illumination, then the first column of the Mueller matrix (given by the 

pBRDF solution) becomes the scattered Stokes vector [23, 30].  Provided this scattered 

Stokes vector, the analysis can then compare the normalized scattered SD and the 

scattered DoP between the pBRDF solution and the 3D vector solution.   

5.2.1 Normalized spectral density validation 

 The present analysis uses the Labsphere Infragold coupon and the nominal far-

field setup (described above).  It also assumes unpolarized illumination, so that x uA A=  

and 0xu uxB B= = .  Figure 15 shows results for this setup with partially coherent 

illumination at non-normal incidence, where 0.5xx uuα α= =  and 20iθ =  .  Note the 

exact agreement between the pBRDF and 3D solutions for the normalized SD with 

various scattering geometries.  Also note that one can obtain the normalized scattered SD 

from the pBRDF solution by cosine correcting the first term of the scattered Stokes 

vector [34], i.e., multiplying by ( )cos sθ , and dividing by the max value.   
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Figure 15.  Comparison of the normalized scattered spectral densities obtained from 
a polarimetric bidirectional distribution function (pBRDF) and the 3D vector 
solution for unpolarized illumination at non-normal incidence and a very rough 
conducting surface.  (a) depicts an in-plane scattering geometry, whereas (b) depicts 
an out-of-plane scattering geometry with results as a function of a single polar angle.  
Conversely, (c) and (d) depict bi-static scattering geometries as a function of a single 
azimuth angle.  Note that the minimum occurs at the mono-static observation point 
in both (c) and (d). 
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5.2.2 Degree of polarization validation 

 The initial analysis presented here again uses the Labsphere Infragold coupon and 

the nominal far-field setup (described above).  It also assumes unpolarized illumination 

throughout, so that x uA A=  and 0xu uxB B= = .  Figure 16 shows results for partially 

coherent illumination at non-normal incidence, where again 0.5xx uuα α= =  and 20iθ =  .  

Note the exact agreement between the pBRDF and 3D solutions for the scattered DoP 

with various scattering geometries. 

 Now the analysis assumes a tactical engagement scenario, so that 0 1.064 μmλ = , 

1,2 10 kmsr r= = , 2.54 2  cmsw = , 0.25xx uu sw= =  , and 56.4iθ =  .  This setup 

corresponds with partially coherent illumination of NKB7 glass, where 1.507n =  [143], 

at Brewster’s angle.  The results presented in Figure 17a show exact agreement between 

the pBRDF and 3D solutions for scattered DoP assuming very rough surface conditions, 

where 0100h λ=  and 010hσ λ= .  Figure 17b then shows results for both very rough and 

smooth-to-moderately rough surface conditions using only the 3D vector solution, where 

again 0100h λ=  but 010hσ λ=  and 00.1λ .  It is important to note that the scattered DoP 

only exists where light exists in the analysis.  This makes sense considering that, by 

definition, the scattered DoP depends on the scattered SD [cf. Eqs. (181) and (182)].  

With that said, Figure 17b shows that the scattered DoP does not depend on surface 

roughness, at least for the assumptions used within the analysis [cf. Footnote 10, p.55].  It 

also does not depend on coherence, at least for unpolarized incident illumination—this is 

consistent with the examples given by Wolf for isotropic beam parameters [13], i.e., 

when xx uu=   (Appendix E shows an example where this is not the case).    
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Figure 16.  Comparison of the scattered degree of polarization obtained from a 
polarimetric bidirectional distribution function (pBRDF) and the 3D vector solution 
for unpolarized illumination at non-normal incidence and a very rough conducting 
surface.  (a) depicts an in-plane scattering geometry, whereas (b) depicts an out of 
plane scattering geometry with results as a function of a single polar angle.  
Conversely, (c) and (d) depict bi-static scattering geometries as a function of a single 
azimuth angle.  Note that the minimum occurs at the mono-static observation point 
in both (c) and (d). 
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Figure 17.  Comparison of the scattered degree of polarization for unpolarized 
illumination at Brewster’s angle of a dielectric surface with varying roughness 
conditions.  (a) shows the results obtained from a polarimetric bidirectional 
distribution function (pBRDF) and the 3D vector solution for non-normal incidence 
at Brewster’s angle with very rough surface conditions.  (b) shows the results from 
the 3D vector solution for both very rough and smooth-to-moderately rough surface 
conditions. 

5.3 Comparison to empirical measurements 

 To compare the 3D vector solution with empirical measurements, the analysis 

uses results from the Complete Angle Scatter Instrument (CASI) at the Air Force Institute 

of Technology [146]20.  Figure 18 describes the scattering geometry associated with the 

CASI for both in-plane measurements (Figure 18a) and out-of-plane measurements 

(Figure 18b).  Provided Figure 18, the analysis uses the following angle transformations, 

developed by Germer and Asmail [148], to relate the CASI scattering geometry to that of 

the 3D vector solution (cf. Figure 9): 

 ( ) ( )1cos cos cosi s sθ α β−  =   , (199) 

                                                 
20.  Goldstein readily describes the principles behind dual-rotating-retarder polarimety 

[147, p. 357]. 
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 ( ) ( ) ( ) ( ) ( ) ( )1cos cos sin sin cos cos coss s s s s s sθ β α δ α β δ−  = +  , (200) 

and ( ) ( )1 13
tan , tan ,

2
s s s i ib a b a

πφ − −= + − . (201) 

In Eq. (201), ( )1tan ,b a−  returns the inverse tangent of b a  after taking into account the 

quadrant of the point ( ),a b .  With this in mind, 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

sin cos sin sin cos sin

cos cos cos sin sin sin

s s s s s s

s s s s s s

b δ γ α β γ

δ α γ β α γ

  = +   
 + − 

, (202) 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

cos cos sin cos sin sin

sin cos cos sin sin sin

s s s s s s s

s s s s s s

a δ γ α α β γ

δ α γ α β γ

 = − − − 
 + − 

, (203) 

 ( ) ( ) ( ) ( ) ( )cos cos sin sin sini s s s s sb α γ β α γ = −  , (204) 

and ( ) ( ) ( ) ( ) ( )cos sin cos sin sini s s s s sa γ α α β γ= − − . (205) 

Provided Eqs. (199)-(205), the following analysis uses the Labsphere Infragold coupon 

and the nominal far-field setup (described above).  These setup parameters best match 

those used by the CASI.  It also assumes unpolarized partially coherent illumination at 

non-normal incidence, so that x uA A= , 0xu uxB B= = , 0.5xx uuα α= = , and 20iθ =  .   

5.3.1 In-plane measurements 

 For in-plane measurements, 0s sβ γ= = .  As a result, the angle transformations 

given above simplify, so that 20s iα θ °= =  and s sδ θ= .  Figure 19 shows results for the 

in-plane comparison study.  Note that the results for the CASI measurements are highly 

oscillatory for both the normalized scattered SD and the scattered DoP.  This is most 

likely due to the fact the measurements contain speckle.  Spinning the sample would 
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average out this speckle; however, the current CASI setup does not allow for continuous 

spinning of the sample.  In addition, the CASI measurements, with respect to the 

normalized scattered SD, show that the Labsphere Infragold coupon does not maintain a 

G-G model for the underlying surface statistics.  Instead, a stretched exponential-

stretched exponential (SE-SE) model better characterizes the Labsphere Infragold coupon 

[138].  This is seen by comparing the results to a full-wave 2D MoM solution [139, 140].  

Here, the analysis obtained the scattered field from 400 independent rough surface 

realizations simulated using the method described by Yura and Hanson [145] with both 

G-G and SE-SE PDFs [cf. Eq. (138)].  Before moving on in the analysis, it is important to 

note that the CASI measurements do not contain enough fidelity, with respect to the 

scattered DoP, to compare them to those obtained by the 3D vector solution. 

5.3.2 Out-of-plane measurements 

 For the out-of-plane measurements, the CASI used the following setup 

parameters: 20sα °=  and 25sβ °= .  Accordingly, one can use the angle transformations 

given above in Eqs. (199)-(205) to relate the 3D vector solution to the CASI 

measurements.  Figure 20 shows results for the out-of-plane comparison study.  Note 

again that the CASI measurements, with respect to the normalized scattered SD, show 

that the Labsphere Infragold coupon does not maintain a G-G model for the underlying 

surface statistics.  Also note that the CASI measurements do not contain enough fidelity, 

with respect to the scattered DoP, to compare them to those obtained by the 3D vector 

solution.    
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(a) 

 
(b) 

Figure 18.  Description of the Complete Angle Scatter Instrument at the Air Force 
Institute of Technology.  (a) shows the scattering geometry used to collect in-plane 
measurements [140], whereas (b) shows the scattering geometry used to collect out-
of-plane measurements [148].  
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Figure 19.  Comparison between in-plane measurements obtained with the 
Complete Angle Scatter Instrument (CASI) at the Air force Institute of Technology, 
a full-wave 2D method of moments (MoM) solution with two different surface 
models, and the 3D vector solution for unpolarized illumination at non-normal 
incidence of a very rough conducting surface.  (a) and (c) show the normalized 
scattered spectral density and the scattered degree of polarization as a function of a 
single polar angle.  (b) and (d) show the same results in log scale. 
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Figure 20.  Comparison between out-of-plane measurements obtained with the 
Complete Angle Scatter Instrument (CASI) at the Air force Institute of Technology 
and the 3D vector solution for unpolarized illumination at non-normal incidence of 
a very rough conducting surface.  (a) and (c) show the normalized scattered spectral 
density and the scattered degree of polarization as a function of a single 
transformation polar angle.  (b) and (d) show the same results in log scale. 
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5.4 Comparison to a paraxial solution 

 An individual can analyze the 3D vector solution within a Cartesian coordinate 

system.  With that said, one must use the following relationships: 

 

( ) ( )1,2 1,2 1,2
1,2 1,2 1,2

1,2 1,2 1,2

1,2 1,2 1,2 1,2 1,2
1,2 1,2 1,2

1,2 1,2 1,2 1,2 1,2

1,2 1,2
1,2 1,2

1,2 1,2

2 2 2 2 2
1,2 1,2 1,2 1,2 1,2 1,2 1,2

sin cos

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

i i
x y z

x y z

r r r

z x z y

r r r

y x

x y r x y z

ϑ ϑ θ ϑ θ

ρ
ρ ρ

ρ ρ

ρ

= = − = +

⋅ = ⋅ = ⋅ = −

⋅ = − ⋅ =

= + = + +

x y z

x y

θ θ θ

φ φ

. (206) 

Provided the relationships in Eq. (206), the analysis can compare the 3D vector solution 

to an ABCD-matrix approach outlined by Korotkova [115].  In general, the ABCD-

matrix approach describes paraxial wave propagation through any complex optical 

system.  When modeling rough surface scattering using the ABCD-matrix approach, a 

phase-screen transmittance function characterizes the scattering process for very rough 

surface conditions.  The inclusion of a soft-Gaussian aperture in the model also accounts 

for the size of the scattering surface and accompanying diffraction effects.   

 The present analysis assumes horizontally polarized (s-pol) illumination and a 

tactical engagement scenario, so that 0u xu uxA B B= = = , 0 1.064 μmλ = ,  

1,2 10 kmsr r= = , 2.54 2  cmsw = , 0.25xx uu sw= =  , and 0iθ =  .  This setup 

corresponds with partially coherent illumination at normal incidence.  To ensure that 

incident illumination “fits” on the rough surface, the present analysis removed the soft-

Gaussian aperture in the ABCD solution.  In addition, the present analysis assumed an 
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idealized perfectly reflecting rough surface, where 0100h λ=  and 010hσ λ= .  Such 

surface statistics correspond to very rough surface conditions [cf. Eq. (174)].   

 Provided this setup, Figure 21 shows excellent agreement between the ABCD 

paraxial solution and the 3D vector solution.  For instance, the magnitude of the scattered 

SDoC (Figure 21a) shows exact agreement.  The vertical line depicted here is the angular 

SDoC multiplied by the propagation distance to observation.  Note that it correctly 

identifies the 1 e  location.  In addition, the normalized scattered SD shows relatively 

good agreement between the two solutions.  The wings of the power distribution 

associated with the 3D vector solution tend to be wider than those associated with the 

ABCD solution; nonetheless, the results show good agreement out to the vertical lines 

depicted in Figure 21b.  These vertical lines are the angular SD radius multiplied by the 

propagation distance to observation.  Furthermore, the scattered DoP (Figure 21c) shows 

exact agreement between the two solutions.  Based on the assumptions used within the 

analysis [cf. Footnote 10, p.55], no de-polarization occurs upon scattering from the 

perfectly reflecting rough surface [22], at least for isotropic beam parameters, i.e., when 

xx uu=   (Appendix E shows an example where this is not the case).  This is also the case 

for p-pol illumination at normal incidence and is consistent with the 2D scalar-equivalent 

solution [10, 11]. 
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Figure 21.  Comparison between an ABCD paraxial solution and the 3D vector 
solution for partially coherent illumination at normal incidence of a very rough 
perfectly reflecting surface.  (a) shows the magnitude of the scattered spectral 
degree of coherence as a function of the distance between two values in the x 
direction, whereas (b) shows the scattered normalized spectral density and (c) shows 
the scattered degree of polarization as a function of a single value in the x direction. 
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6 Conclusion 

 This dissertation develops a 3D vector solution for the far-field scattering of 

spatially partially coherent electromagnetic beam illumination from statistically rough 

surfaces.  Compared to previous research efforts, the 3D vector solution developed in this 

dissertation significantly extends the rough surface scattering literature, since most of the 

theory developed to date considers only the effects of fully coherent and fully incoherent 

illumination in the formation of solutions.  Moreover, the analysis contained in this 

dissertation considers three different material substrates: dielectrics, conductors, and a 

perfect electrical conductor (PEC).  By incorporating the effects of the material 

parameters within the analysis, the 3D vector solution developed here transcends 

previous efforts which included the effects of partially coherent beam illumination, but 

not the effects of the material parameters.   

 To develop the 3D vector solution contained in this dissertation, the analysis uses 

the physical optics approximation (Kirchhoff boundary conditions).  It also uses a 

Gaussian Schell-Model (GSM) form for the incident field cross spectral density matrix 

(CSDM).  This allows for the formulation of a closed-form expression for the scattered 

field CSDM.  In practice, two separate analytical forms result for the scattered field 

CSDM.  The first analytical form is applicable to smooth-to-moderately rough surfaces.  

It depends on an infinite series that is slowly convergent; however, one can still gain 

physical intuition from the resultant closed-form expression.  The second analytical form 

is applicable to very rough surfaces.  Here, the closed-form expression is extremely 

physical, and under certain circumstances, maintains a GSM form.  This is in agreement 

with published results valid only in the paraxial regime. 
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 By using the CSDM notation within the 3D vector solution, all aspects inherent in 

Wolf’s unified theory of coherence and polarization apply here [12, 13].  Accordingly, 

the analysis contained in this dissertation readily formulates the spectral degree of 

coherence (SDoC), the spectral density (SD), and degree of polarization (DoP) to observe 

the coherence, size, and polarization properties of the scattered radiation in comparison to 

the incident radiation.  The SDoC, SD, and DoP are measurable quantities in practice and 

serve as metrics in which to compare the 3D vector solution to previously validated 

solutions and empirical measurements.  With this said, the analysis contained in this 

dissertation rigorously compares the obtained 3D vector solution to previously validated 

solutions and empirical measurements.  The comparisons show good agreement under the 

appropriate conditions. 

6.1 Contributions 

 There are two significant contributions which have already resulted from this 

dissertation effort (with more to come).  The first is a SPIE Newsroom article which 

highlights the contributions of the 2D scalar-equivalent solution [10, 11] and sets the 

stage for the 3D vector solution developed here [8].  This article also proposes a novel 

experiment, which could validate the analysis contained in both the 2D and 3D solutions 

and is an area for future research (discussed below).  The second is a 16th Annual 

Directed Energy Symposium proceeding which formulates the 3D vector solution for a 

PEC material substrate [9].  This contribution was selected for publication in both the 

2013 AP-URSI and 2014 IEEE-Aerospace conferences based on abstract submission; 

however, due to setbacks in the federal government’s budget, this publication was 

postponed.   
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6.2 Future areas of research 

 Future work in rough surface scattering using partially coherent illumination 

includes, but is not limited to, the following topics. 

• Anisotropic material substrates, where the surface correlation length is 
directionally dependent within the analysis [43, 66]. 

• Partially coherent pulsed illumination that emanates from a source that is not 
statistically wide-sense stationary [82, 149]. 

• The construction of designer surfaces which control the spatial and temporal 
coherence properties of the scattered radiation [85, 113]. 

• The use of a non uniformily polarized source, where the source width is 
directional dependent within the analysis [101, 135]. 

• Surfaces with large surface slopes so that shadowing, masking, and multiple 
scattering effects play a role in the analysis [66, 150]. 

• The development of a closed-form coherent polarimetric bidirectional distribution 
function, which is validated using high-fidelity measurements [46, 127]. 

• The development of wave-optics simulations to model the spatially partially 
coherent beam illumination and the laser-target interaction [102, 103]. 

• Validation experiments which use a broadband source and narrowband filters to 
look at changes in the SD and DoP upon scattering off a rough surface [8, 13]. 
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Appendix A. Using the geometrical optics approximation to relate the 

tangential fields at the scattering surface 

 Referencing the micro-scale scattering geometry given in Figure 23 [18], the law 

of reflection dictates that the angle of incidence equals the angle of reflection, inc refθ θ= .  

This is a direct result from geometrical-optics (GO) approximation [22].  As such, the 

following relationships hold true at the closed surface S of a scattering object: 

 ˆ ˆˆ ˆinc ref⋅ = − ⋅n k n k , (207) 

 ( )ˆˆ cosinc incθ⋅ = −n k , (208) 

 ( )ˆˆ cosref refθ⋅ =n k , (209) 

 ˆ ˆˆ ˆinc ref× = ×n k n k , (210) 

 ( )ˆ ˆˆ sininc incθ× =n k t , (211) 

and ( )ˆ ˆˆ sinref refθ× =n k t , (212) 

where n̂  is the unit normal vector, ˆ inck  is the unit incident propagation vector, ˆ refk is the 

unit reflected propagation vector, and t̂  is the unit tangential vector.  Provided Eqs. (207)

-(212), the purpose of this appendix is to demonstrate how the tangential reflected fields, 

ˆ ref×n E  and ˆ ref×n H , relate to the tangential incident fields, ˆ inc×n E  and ˆ inc×n H , for 

different material substrates, i.e., dielectrics, conductors, and a perfect electrical 

conductor (PEC).  
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Figure 22:  The micro-scale geometry describing how to relate the incident field to 
the reflected field using the geometrical optics approximation.  

 The following relationship defines the Fresnel reflection coefficient Sr  at the 

closed surface S: 

 
inc

S ref
r =

E

E
, (213)  

so that ˆ ˆref inc
Sr× = ×n E n E . (214) 

Equation (31) above repeats this GO result.  Moreover, since [14] 

 0
ˆη= − ×E k H , (215) 

a similar relationship exists for the magnetic fields to that given in Eq. (214) for the 

electric fields.  Substituting Eq. (215) into Eq. (214), 

 ( ) ( )0 0
ˆ ˆˆ ˆref ref inc inc

Srη η− × × = − × ×n k H n k H . (216) 

Furthermore, using the following vector identity: 

 ( ) ( ) ( )× × = ⋅ − ⋅A B C B A C C A B  (217) 

and Eqs. (207)-(212), Eq. (216) manipulates as follows: 

( )0 0,n h

n̂ˆ inck ˆ refk

Ä
t̂Material

Substrate

refqincq

S
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ

ref ref ref ref inc inc inc inc
S S

ref inc ref inc inc inc inc inc
S S S

ref inc ref inc inc inc inc inc
S S S

inc i
S

r r

r r r

r r r

r

 ⋅ − ⋅ = ⋅ − ⋅

 ⋅ + ⋅ = ⋅ − ⋅

 × ⋅ + × ⋅ = × ⋅ − × ⋅

 × ⋅

k n H H n k k n H H n k

k n H H n k k n H H n k

n k n H n H n k n k n H n H n k

n k n H( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆnc ref inc inc inc inc inc
S Sr r+ × ⋅ = × ⋅ − × ⋅n H n k n k n H n H n k

.(218) 

From Eq. (218), it is readily apparent that 

 ˆ ˆref inc
Sr× = − ×n H n H . (219) 

Equation (32) above repeats this GO result. 

 The tangential components of the electric field equate zero along the surface of a 

PEC [1].  Thus, the following relationship holds true: 

 ( )ˆ ˆ ˆ0inc ref inc ref× + =  × = − ×n E E n E n E . (220) 

Equation (37) above repeats this GO result.  Substituting Eq. (215) into Eq. (220), 

 ( ) ( )0 0
ˆ ˆˆ ˆinc inc ref refη η× × = − × ×n k H n k H . (221) 

Additionally, using Eq. (217) and Eqs. (207)-(212), Eq. (221) manipulates as follows: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ

inc inc inc inc ref ref ref ref

inc ref inc ref ref ref ref ref

inc ref inc ref ref ref ref ref

ref ref inc

  ⋅ − ⋅ = − ⋅ − ⋅ 

 ⋅ − ⋅ = ⋅ − ⋅

 × ⋅ − × ⋅ = × ⋅ − × ⋅

 × ⋅ − × ⋅

k n H H n k k n H H n k

k n H H n k k n H H n k

n k n H n H n k n k n H n H n k

n k n H n H n( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆref ref ref ref ref= × ⋅ − × ⋅k n k n H n H n k

. (222) 

From Eq. (222), it is readily apparent that 

 ˆ ˆref inc× = ×n H n H . (223) 

Equation (38) above repeats this GO result.   
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Appendix B. Using the physical optics approximation to simplify the 

equivalent surface current densities 

 The physical-optics (PO) approximation uses the geometrical-optics (GO) 

approximation to formulate the current densities involved in an electromagnetic 

scattering problem.  With that said, the purpose of this appendix is to demonstrate how 

the equivalent surface current densities, which result from using surface equivalence, 

simplify to known quantities when using the GO approximation in association with the 

PO approximation.   

 To make this concept manifest, first consider the micro-scale scattering geometry 

given in Figure 23.  Here, the law of reflection dictates that the angle of incidence equals 

the angle of reflection, inc refθ θ= .  This is a direct result from the GO approximation 

[22].  In using the GO approximation as part of the PO approximation, one must assume 

that the scattering object and its associated surface curvature are large compared to the 

wavelength of the incident fields.  Such approximations are exact when the scattering 

surface is homogeneous, infinite, and planar [14, 22].  As such, when using the PO 

approximation, the following relationships hold true at the closed surface S of a scattering 

object: 

 
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ

inc
inc ref ref

inc

×= = × − = ×
×

k n
s s k p s k p

k n
, (224) 

 ˆ ˆˆ ˆ ˆ ˆinc inc= × − = ×p s k p k s , (225) 

 ˆ ˆˆ ˆ ˆ ˆref ref ref ref= − × = ×p s k p k s , (226) 

and ˆ ˆˆ ˆinc ref− ⋅ = ⋅n k n k , (227) 
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where ŝ  is the unit perpendicular vector, p̂  is the unit parallel vector, ˆ refp  is the unit 

parallel vector upon reflection, n̂  is the unit normal vector, ˆ inck  is the unit incident 

propagation vector, and ˆ refk is the unit reflected propagation vector.  Provided Eqs. (224)

-(227), one can then write the equivalent surface current densities, eq
SJ  and eq

SM , in terms 

of only the known incident electric field incE .  This is shown in the analysis to follow. 

 
Figure 23:  The micro-scale geometry describing how to relate the incident field to 
the reflected and transmitted fields using the geometrical optics approximation.  

 As stated in Section 2.3, when using the PO approximation with surface 

equivalence, one replaces the unknown scattered fields with reflected fields.  In 

particular, sct ref≈E E  and sct ref≈H H , so that the equivalent surface current densities, 

eq
SJ  and eq

SM , become 

 ( ) ( )ˆ ˆ ˆeq ext inc sct inc ref
S = × = × + ≈ × +J n H n H H n H H  (228) 

and ( ) ( )ˆ ˆ ˆeq ext inc sct inc ref
S = − × = − × + ≈ − × +M n E n E E n E E . (229) 

Moreover, in using the following relationship [14]: 

n̂





ˆ inck

ŝ p̂

ˆ refp

ŝ
ˆ refk( )0h

( )h
S

incq
refq

ˆ-n

ˆ trsk

trsq
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0

1 ˆ
η
= ×H k E  (230) 

and writing the respective electric fields in terms of their perpendicular and parallel 

components, i.e.,  

 ( )ˆˆ ˆ ˆ= + ⋅E ss pp E , (231) 

the equivalent surface current densities, eq
SJ  and eq

SM , become  

 ( ) ( )
0

1 ˆ ˆˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆeq inc inc ref ref ref ref
S η

 = × × + ⋅ + + ⋅ J n k ss pp E k ss p p E  (232) 

and ( ) ( )ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆeq inc ref ref ref
S

 = − × + ⋅ + + ⋅ M n ss pp E ss p p E . (233) 

Defining the perpendicular and parallel Fresnel reflection coefficients as 

 
( ) ( )
( ) ( )

0

0

cos cosˆ

ˆ cos cos

inc trsref

inc inc trs
r

η θ η θ
η θ η θ⊥

−⋅= =
⋅ −

s E

s E
 (234) 

and 
( ) ( )
( ) ( )

0

0

cos cosˆ

ˆ cos cos

inc trsref ref

inc inc trs
r

η θ η θ
η θ η θ
− +⋅= =

⋅ +
p E

p E , (235) 

where trsθ  is the angle of transmission, 0η  is the impedance of free-space, and η  is the 

impedance of the material substrate (cf. Figure 23), one can then write the equivalent 

surface current densities, eq
SJ  and eq

SM , in terms of only the known incident electric field 

incE .  Specifically, 

 ( ) ( )
0

1
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆeq inc ref ref inc

S r r
η ⊥

 = × × + + × + ⋅ J n k ss pp k s s p p E  (236) 

and ( ) ( )ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆeq ref inc
S r r⊥

 = − × + + + ⋅ M n ss pp s s p p E . (237) 
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Before moving on in the analysis, it is important to note that the Fresnel reflection 

coefficients, as defined in Eqs. (234) and (235), are readily derived throughout the 

electromagnetic and optics literature.  Balanis’ treatment is particularly insightful [14], as 

his problem setup directly relates to that used in Figure 23. 

 Using the relationships found in Eqs. (224)-(227), the equivalent surface current 

densities, eq
SJ  and eq

SM , as given in Eqs. (236) and (237), simplify even further, such that 

 

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

1
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1
ˆ ˆ ˆ ˆ ˆ ˆ1

1 ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

eq inc ref ref inc
S

ref inc

ref inc

inc ref inc

r r

r r

r r

r r

η

η

η

η

⊥

⊥

⊥

⊥

 = × × + + × + ⋅ 

 = × − + − ⋅ 

 = × − − − ⋅ 

 = × − − × × − ×− × ⋅ 

J n k ss pp k s s p p E

n sp ps p s s p E

n s p p p s E

n s p n s k n s k s E









 (238) 

and ( ) ( )
( ) ( )

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

eq ref inc
S

ref inc

ref inc

r r

r r

r r

⊥

⊥

⊥

 = − × + + + ⋅ 
 = − × + + + ⋅ 

 = − × + + × + × ⋅ 

M n ss pp s s p p E

n s s p p p E

n s s n p n p p E







. (239) 

Furthermore, using the following vector identity: 

 ( ) ( ) ( )× × = ⋅ − ⋅A B C B A C C A B , (240) 

one can then write the equivalent surface current densities, eq
SJ  and eq

SM , in terms of the 

dyadics, eq
SJ


 and eq
SM


, where 
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( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

0

0

0

0

1 ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

1 ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 , since 0

1 ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

1 ˆˆ ˆ ˆ ˆ ˆ1 1

eq inc ref inc
S

inc ref inc

inc inc inc

inc

r r

r r

r r

r r

η

η

η

η

⊥

⊥

⊥

 = × − − × × − ×− × ⋅ 

 = × − − ⋅ + ⋅ ⋅ ⋅ = 

 = × − − ⋅ − ⋅ ⋅ 

= × − − ⋅ −

J n s p n s k n s k s E

n s p s n k s n k s E n s

n s p s n k s n k s E

n s p s n k







 ( )

( ) ( )

( ) ( )
0

0

0

ˆ

1 ˆˆ ˆ ˆ ˆ ˆ1 1

1
ˆ ˆ ˆ ˆ ˆ1 1

1

inc

inc inc

inc

eq inc
S

r r

r r

η

η

η

⊥

⊥

⊥

  ⋅ 

 = × − − × − ⋅ 

 = × − − − ⋅ 

= ⋅

s E

n s p s k s E

n s p p s E

J E







 (241) 

and 

( ) ( )
( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 , since 0

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

eq ref inc
S

inc ref inc

inc ref inc

inc inc

r r

r r

r r

r r

⊥

⊥

⊥

⊥

 = − × + + × + × ⋅ 
 = − × + + × × + ×− × ⋅ 

 = − × + + ⋅ − ⋅ ⋅ ⋅ = 

 = − × + + ⋅ + ⋅

M n s s n p n p p E

n s s n s k n s k p E

n s s s n k s n k p E n s

n s s s n k s n k p







( )
( ) ( )( )
( ) ( )
( ) ( )

ˆˆ ˆ ˆ ˆ ˆ ˆ1 1

ˆˆ ˆ ˆ ˆ ˆ1 1

ˆ ˆ ˆ ˆ ˆ1 1

inc

inc inc

inc inc

inc

eq inc
S

r r

r r

r r

⊥

⊥

⊥

⋅

 = − × + + ⋅ + ⋅ 
 = − × + + × + ⋅ 
 = − × + + + ⋅ 

= − ⋅

E

n s s s n k p E

n s s s k p E

n s s p p E

M E








. (242) 

Equations (115)-(118) above repeat these PO results.  
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Appendix C. Using the method of stationary phase to solve the integrals 

with respect to the plane-wave spectrum representation 

 The plane-wave spectrum representation often results in rather complex integral 

expressions.  In practice, one must employ mathematical techniques, such as the method 

of stationary phase (MoSP), to solve these complex integral expressions.  The purpose of 

this appendix is to demonstrate how one uses the MoSP to reduce the integrals with 

respect the plane-wave spectrum representation into closed-form expressions.  

 Within the analysis given above, the plane-wave spectrum representation results 

in integral expressions which take the following form [cf. Eqs. (141)-(144)]: 

 0
1 2 1 2e jk g i i i i

x x u udk dk dk dk
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

=     f


 , (243) 

where ( )1 2 1 2 1 2 1 2, , , ; , , ,i i i i
x x u uk k k k x x y y′ ′ ′ ′=f f

 
 is a representative amplitude dyadic that 

contains all of the amplitude terms and ( )1 2 1 2 1 2 1 2, , , ; , , ,i i i i
x x u ug g k k k k x x y y′ ′ ′ ′=  is a phase 

function that contains all of the phase terms.  In using the MoSP (cf. Section 2.4.3), Eq. 

(243) simplifies into the following closed-form expression:  

 
{ }

[ ] { }
2

20
0 0 01 2

2
0

0

2
exp exp sgn

4Det
jk g j g

k g

π π   = ∂   
   ∂

f


  (244) 

where 0f


 and 0g  are the amplitude dyadic and phase function evaluated at the critical 

points of the first kind, respectively.  In general,  
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( )

( )

( )

( )

2 2 2 2

2
1 2 1 1 1 21

2 2 2 2

2
2 1 2 1 2 222

2 2 2 2

2
1 1 1 2 1 21

2 2 2 2

2
2 1 2 2 2 1 2

i i i i i ii
x x x u x ux

i i i i i ii
x x x u x ux

i i i i i ii
u x u x u uu

i i i i i i i
u x u x u u u

g g g g

k k k k k kk

g g g g

k k k k k kk
g

g g g g

k k k k k kk

g g g g

k k k k k k k

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∂

∂ =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂





 
 
 
 
 
 
 
 
 
 
 

, (245) 

so that 2
0g∂  is a real symmetric non-degenerate matrix which is also evaluated at the 

critical points of the first kind.  To determine the critical points of the first kind, one must 

first account for the phase function g . 

 In the analysis given above, the following common phase function results [cf. Eq. 

(149)]:  

 

( ) ( )

( ) ( ) ( )
( ) ( )

2 2 1 1

2 2 1 1 2 2 1

1 1 2 2 1 1

1
0 0

2 2

ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ ˆˆ ˆ

1

ˆ

ˆ

ˆ

i i
s v s v

i i i i
x x u u

g r y k r y k

x k x k y k y k
k k

x x y y

′ ′+ ⋅ − + ⋅      
⋅

′ ′ ′ ′+ − + −

=

′ ′ ′ ′⋅+ − ⋅ + ⋅ − ⋅x r x r y r y

y u

r

y v y v

, (246) 

where ( ) ( )2 22
1,2 0 1,

2 2

1,2 1,22
0

0 0
2 1,2 1

i i
xi i i

v x
u

u

k k
k k k k

k k
k= − −

   
− −      
   

= . (247) 

Provided Eq. (246), one then computes the following first-order partial derivatives: 

 
( )1 11

2 2
0

2 1 1
0

0 0

1

ˆ ˆ

1

i
x s

i i
x u

i
x

k r yx

k k k
k

k k

g

k

′+ ⋅ ′  ∂ =
∂

− +
   
− −   
   

y v
, (248) 
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( )2 22

2 2
0

2 2 2
0

0 0

2

ˆ ˆ

1

i
x s

i i
x u

i
x

k r yx

k k k
k

k

g

k

k

′+ ⋅ ′  ∂ =
∂

−
   
− −   
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y v
, (249) 

 
( ) ( )1 11

2 2
0

2 1 1
0

0 0

1

ˆ ˆˆ ˆ

1

i
u s

i i
x u

i
u

k r yy

k k k
k

k

k

k

g ′+ ⋅ ′⋅  − +
   
− −

∂ =

  
  

∂



y vy u
, (250) 

and 
( ) ( )2 22

2 2
0

2 2 2
0

0 0

2

ˆ ˆˆ ˆ

1

i
u

u

i
u

s

i i
x

k r yy

k k k
k

k

k

k

g ′+ ⋅ ′⋅  −
   
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

∂



=

 

∂
y vy u

. (251) 

By setting Eqs. (248)-(251) equal to zero and solving for 1,2
i
xk  and 1,2

i
uk , one then obtains 

four equations and four unknowns.  Specifically, 
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1,2 1,2 1

2

1 2
,

,

,
1 2

2ˆ ˆ
0

ˆ ˆ2

i
u

s s

i
xi

x

x k k
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∂ y v y v

 (252) 

and 
( ) ( )

( ) ( ) ( )

2

1,2

2
1,2 0 1,2

2 22 2 2
1,2 1,2 1,2

1,2

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ2
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i
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s s

i
ui
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y k k

r y y r y

g
k

k

∂ =  =
′⋅ −

′ ′ ′⋅ + ⋅
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+ +∂ ⋅

y u

y u y v y v
. (253) 

These four unknowns are the critical points of the first kind, i.e., 1,2
i
xk  and 1,2

i
uk .  By 

substituting Eq. (252) into Eq. (253) and vice versa, one then determines the critical 

points of the first kind as 

 
( )00

1,2 1,2 1,2 1,2

ˆ ˆi i
x u

s s

kk
k x k y

r r

⋅
′ ′≈ ≈

y u
. (254) 

Equation (156) above repeats this MoSP result. 
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 In writing Eq. (254), one replaces 1,2x′±  and 1,2y′±  (which result from solving 

quadratic expressions) with 1,2x′  and 1,2y′ .  This result is physically intuitive based on the 

macro-scale scattering geometry given in Figure 9a.  Furthermore, one assumes that 

 ( ) ( ) ( )22 2 2
1,2 1,2 1,2

2ˆ ˆ ˆˆ ˆ 2 ˆs s sr x y r y r ′ ′ ′+ + ⋅ + ≈ + ⋅ ⋅y v y vy u . (255) 

This is analogous to saying that distance from source-plane origin to the surface-plane 

origin is much greater than half the surface length, i.e., sr L , which is typically the 

case for most directed-energy and remote-sensing engagement scenarios.  To provide 

some idea of how much greater, letting 5sr L= , 25sr L= , and 100sr L=  results in 

percentage errors of 18% , 4% , and 1% , respectively.  These percentage errors result 

from setting 1,2 1,2x y L′ ′= = , ( )ˆ ˆ sin 1iθ⋅ = =y v , and ( )ˆ ˆ cos 0iθ⋅ = − =y v  in Eq. (255).   

 Provided Eqs. (248)-(251), one then computes the following second-order partial 

derivatives: 
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and 
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y v
. (262) 

In Eqs. (261) and (262), one assumes that 0
i
xk k  and 0

i
uk k  (reasons discussed 

below); consequently, 2g∂  becomes a diagonal matrix upon substituting Eqs. (256)-(262) 

into Eq. (245).  Subsequent evaluation of 2g∂  at the critical points of the first kind [cf. 

Eq. (254)] results in the following relationships: 

 { } ( ) ( )
( ) ( )

2 28 4
1 2

2 2 82 28 2 2 2 2
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   ′ ′ ′ ′+ ⋅ − + ⋅ −  

∂ =



y v y v

y v y v
, (263) 

and { } { } { }2 2 2
0 0 0sgn 0g g gλ λ+ −∂ = ∂ − ∂ ≈ , (264) 

where { }2
0gλ± ∂  are the number of positive and negative eigenvalues of 2

0g∂ .  Equations 

(152)-(155) above use these relationships in combination with Eq. (244).   
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 As discussed above in Section 4.3, the analysis assumes that i i
v xk k  and  

i i
v uk k .  In so doing, the analysis also assumes that  

 ( ) ( )
0

2 2
1,2 1,2 1,2

0
0 0

, in

, in 
2 2

i i i
v x u

k

k k k
k g

k k


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− −


f


. (265) 

Thus, in evaluating the phase function g  [cf. Eq. (246)] at the critical points of the first 

kind [cf. Eq. (254)], the following relationship results: 
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r r

′ ′⋅ ⋅′ ′ ′=

′ ′ ′ ′⋅ − ⋅ + ⋅ − ⋅

′− + − + ⋅ − ⋅

+

y u y u
y v y

x r x r y r y r

v
. (266) 

Equations (152)-(155) and subsequently Eq. (157) above use this relationship in 

combination with Eq. (244).  With this in mind, the analysis evaluates the representative 

amplitude dyadic f


 [cf. Eqs. (145)-(148)] at the critical points of the first kind below in 

Appendix D. 
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Appendix D. Defining the dyadics that contain all of the amplitude and 

phase terms evaluated at the critical points of the first kind 

 In using the MoSP to simplify Eqs. (141)-(144), Eqs. (152)-(156) result.  Inherent 

in Eq. (152)-(155) are the following dyadics: 

 0 0
0 1 2 1 2e

L L L L
jk g

L L L L

dx dx dy dy
− − − −

′ ′ ′ ′=     f
 

 , (267) 

 0 0
0 1 2 1 2e

L L L L
jk g

L L L L

dx dx dy dy
− − − −

′ ′ ′ ′=     f
 

 , (268) 

 0 0
0 1 2 1 2e

L L L L
jk g

L L L L

dx dx dy dy
− − − −

′ ′ ′ ′=     f
 

 , (269) 

and 0 0
0 1 2 1 2e

L L L L
jk g

L L L L

dx dx dy dy
− − − −

′ ′ ′ ′=     f
 

 , (270) 

where 0f

 , 0f

 , 0f

 , and 0f


  are the amplitude dyadics evaluated at the critical points of 

the first kind, respectively, and 0g  is a common phase function which is also evaluated at 

the critical points of the first kind.  Provided Eqs. (267)-(270), the purpose of this 

appendix is to explicitly define the dyadics 

 , 


 , 


 , and 


  for different material 

substrates, i.e., dielectrics, conductors, and a perfect electrical conductor (PEC). 

General problem for dielectrics 

 With some mathematical prowess, one establishes the dyadics given in Eqs. (267)

-(270) as 
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and ( )
( )

ij

ij i j
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



. (274) 

In Eqs. (271)-(274), xxΨ , xuΨ , uxΨ , and uuΨ  are the remaining integrals with respect to 

the parameterized rough surface [cf. Eq. (157)].  The analysis above determines closed-

form solutions for these integrals in sub-section 4.3.1 for smooth-to-moderately rough 



119 

surfaces and in sub-section 4.3.2 for very rough surfaces.  With this said, one determines 

the other parameters in Eqs. (271)-(274) as 
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and 1,2 1,2 1,2 1,2 1,2 1,2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆx y zϑ ϑ ϑ= ⋅ = ⋅ − ⋅ = ⋅ − ⋅x r y r y v z r z v . (289) 

In Eqs. (277)-(288), 1,2r⊥  and 1,2r  are the perpendicular and parallel Fresnel reflection 

coefficients for two separate observation points, respectively.  Referencing the micro-

scale scattering geometry given in Figure 9b, one derives these coefficients as [14] 
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In writing Eqs. (290) and (291), one must assume that the medium below the statistically 

rough surface S  is nonmagnetic with index of refraction n 21.  Above, the medium is free 

space with index of refraction 0 1n = .  One also uses the law of refraction, i.e., 

( ) ( )0sin sint in nθ θ= , which is a direct result from the geometrical-optics approximation 

[22].  Note that these assumptions are valid at optical wavelengths for dielectric materials 

[20].   

Specialization to conductors 

 For a very good conductor, the conductivity approaches infinity, σ →∞  [14].   

As such, the tangential incident electric field approximates to zero all along the surface of 

the conducting material, i.e., ˆ 0i× ≈n E , and only the electric equivalent surface current 

density J  radiates when using the PO approximation.  This says that only the dyadic 

  

exists, i.e., 0≈ ≈ ≈
 

   , and the analysis simplifies greatly from that of dielectrics.  

Furthermore, 1,2 0tθ ≈  in Eqs. (290) and (291) [14].  Based on this knowledge, 

 
( ) ( )
( ) ( )

( )
( )

0 1,2 1,2 0 1,2

1,2

0 1,2 1,2 0 1,2

cos cos cos

cos cos cos

i t i

i t i

n n n n
r

n n n n

θ θ θ
θ θ θ⊥

− −
= ≈

+ +
 (295) 

and 
( ) ( )
( ) ( )

( )
( )

1,2 0 1,2 1,2 0

1,2

1,2 0 1,2 1,2 0

cos cos cos

cos cos cos

i t i

i t i

n n n n
r

n n n n

θ θ θ
θ θ θ

− + − +
= ≈

+ + . (296) 

                                                 
21.  Within a nonmagnetic medium the permeability becomes that of free space, i.e., 

0μ μ≈ , and the index of refraction n  and impedance η  simplify, such that 

( )0 0 0n εμ ε μ ε ε= ≈  and 0η μ ε μ ε= ≈  (cf. Footnote 2, p. 5) [14]. 



123 

Note that these approximations are typically valid at optical wavelengths for conducting 

materials.  The analysis explores this validity further in Appendix E below.  

Specialization to a perfect electrical conductor 

 In general, a PEC has infinite conductivity, σ = ∞ , and the tangential electric 

field becomes zero all along its surface, i.e., ˆ 0ext× =n E  [14].  Based on this knowledge, 

1,2 1r = −  and 1,2 1r⊥ = −  in Eqs. (290) and (291).  This gives rise to a perfectly reflecting 

surface, and the analysis simplifies even more from that of conductors.  For a PEC, only 

the dyadic 

  exists within the analysis, i.e., 0= = =

 
   .  Moreover, the dyadic 


  simplifies [cf. Eq. (274)], such that 

 ( )
( )

ij

ij i j
m1 n2 mn

m , n ,1 2

i , , ;  j , ,
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xx xy xz

yx yy yz

zx zy zz

x u x uz z

x y z x y z

ϑ ϑ = =

 
 =  
  

= = =

= Ξ Ξ Ψ 

   
  
  







, (297) 

where ( ) ij
ij

1 if , , , or   
sgn

1 otherwise
xy yx yz zy− =

= 


    
 , (298) 

 ( ) ( )1,2 1,2 1,2ˆ ˆ ˆ ˆx
x y zϑ ϑΞ = ⋅ + ⋅y v z v , (299) 

 1,2 0x
uΞ = , (300) 

 ( )1,2 1,2ˆ ˆy
x xϑΞ = ⋅y v , (301) 

 ( )( ) ( )( )1,2 1,2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆy
u zϑΞ = ⋅ ⋅ − ⋅ ⋅  y v z u y u z v , (302) 

 ( )1,2 1,2ˆ ˆz
x xϑΞ = − ⋅z v , (303) 
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and ( )( ) ( )( )1,2 1,2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆz
u yϑΞ = ⋅ ⋅ − ⋅ ⋅  y v z u y u z v . (304) 

Note that these assumptions are valid at optical wavelengths for a perfectly conducting 

material. 
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Appendix E. Examining the validity of the approximations used when 

specializing to conductors 

 The purpose of this appendix is to explore the validity of the approximations 

made when specializing to conductors.  For example, Figure 24 plots the relationships 

found Eqs. (295) and (296) for a typical in-plane scattering geometry, where 1,2=r r , 

90sφ °= , 45iθ °= , and 0 1.064 μmλ = .  The conductors studied in this example are 

titanium (Ti), aluminum (Al), nickel (Ni), and silver (Ag), which have the following 

complex indices of refraction: Ti 3.388 3.331n j= − , Al 1.376 10.21n j= − , 

Ni 1.376 10.21n j= − , and Ag 0.2342 7.214n j= −  [143].  Note that this example maintains 

average percentage errors much less than one for all of the conductors studied. 

 Figure 25 shows results for a tactical engagement scenario with anisotropic beam 

parameters, so that u xA A= , 0xu uxB B= = , , 0.5xx sw= , 0.25uu sw= , 

, Al 1.376 10.21n j= − , , 45iθ =  , 0100h λ= , and 

.  This setup corresponds with unpolarized partially coherent illumination at 

non-normal incidence of a very rough conducting surface.  As such, the approximations 

leading up to Eqs. (295) and (296) are typically valid when considering the magnitude of 

the scattered spectral degree of coherence (SDoC) (Figure 25a), the normalized scattered 

spectral density (SD) (Figure 25b), and the scattered degree of polarization (DoP) (Figure 

25c) with conductors.  The results displayed here show exact agreement with respect to 

the scattered SDoC and SD but not the scattered DoP.  Thus, as a rule of thumb, one 

should use the analysis contained in the general problem to avoid errors in the results.  

2.54 2  cmsw =

0 1.064 μmλ = 1,2 10 kmsr r= =

010hσ λ=
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Figure 24.  Assessment of the approximations used with the parallel and 
perpendicular Fresnel reflection coefficients for titanium (Ti), aluminum (Al), nickel 
(Ni), and silver (Ag).  (a) depicts the amplitude, whereas (b) depicts the phase as a 
function of a single polar angle. 
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Figure 25.  Assessment of the approximations used when specializing to conductors.  
(a) shows the magnitude of the scattered spectral degree of coherence as a function 
of the difference between two polar angles, whereas (b) shows the scattered 
normalized spectral density and (c) shows the scattered degree of polarization as a 
function of a single polar angle.  Note that the analysis includes results for a perfect 
electrical conductor (PEC) for comparison purposes. 
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